Effect of chloride ion and temperature on corrosion of aluminum alloy in coolant
-
摘要: 分别采用了动电位极化法、电化学阻抗法研究了不同温度下、不同氯离子浓度下防锈铝在模拟冷却液中的腐蚀行为,采用金相显微镜和扫描电镜对极化后防锈铝的表面特征进行了观察和记录。结果表明,氯离子吸附在防锈铝氧化膜表面,对氧化膜表面造成破坏。在一定温度下(30℃),当氯离子浓度超过0.01mol/L时,中间产物吸附作用就会增强,阻抗谱中低频区出现感抗弧,点蚀萌生。随着氯离子浓度增高(超过0.01mol/L),防锈铝的腐蚀加剧,耐腐蚀性能下降。随着温度的升高,阴极和阳极反应阻力变小,阳极金属铝的溶解和阴极氧还原速度增大,腐蚀速度增大。温度升高的同时,溶解氧含量下降,阴极反应受到抑制。与此同时扩散过程在整个腐蚀反应过程中的支配性降低,中间产物在氧化膜表面的吸附作用增强,从而导致低频容抗弧的出现。温度对点蚀形貌的影响主要体现在影响单个点蚀坑的几何大小,促进点蚀坑的生长。Abstract: The effect of chloride concentration and temperature on the corrosion of aluminum alloy in the stimulated coolant was studied by potentiodynamic polarization and electrochemical impedance spectra. The surface characterization of aluminum alloy after polarization was featured by metallurgical microscope and scanning electron microscope. The results show that chloride ions would be involved in the film formation, and decrease the stability of the film. Under a certain temperature (30℃), when the concentration of chloride ion is higher than 0.01 mol/L, the adsorption of intermediate was significant. Inductive loop emerged in the low frequency part of Nyquist diagram, and pits initiate. With the increase of chloride ion concentration (more than 0.01mol/L), the corrosion resistance of aluminum alloy decreased. With the increase of temperature, as the resistance of anodic and cathodic reaction decreased, the rate of anodic and cathodic reaction increased, and corrosion rate increased. When the temperature rose, the dominant effect of diffusion in corrosion process was weakened due to the content of oxygen decreased,the adsorption effect of intermediate was enhanced and inductive loop emerged in the low frequency part. Temperature affects the size of single pit and facilitates the growth of pits.
-
Key words:
- chloride ion /
- temperature /
- aluminum alloy /
- coolant /
- ethylene glycol /
- corrosion behavior
-
[1] 刘建华,高庆娜,李英东,等.5A05和2A12铝合金在硫酸-己二酸中阳极氧化行为及膜层电化学性能研究[J].北京航空航天大学学报,2015,41(5):757-763.LIU J H,GAO Q N,LI Y D,et al.Oxidation behavior of aluminum alloy 5A06 and 2A12 in sulfuric-adipic acid and eletrocheical property of anodic oxide[J].Journal of Beijing University of Aeronautics and Astronautics,2015,41(5):757-763(in Chinese). [2] SU J X,MA M Y,WANG T J,et al.Fouling corrosion in aluminum heat exchanger[J].Chinese Journal of Aeronautics,2015,28(3):954-960. [3] WEON J I.Corrosion mechanism of aluminum alloy by ethylene glycol-based solution[J].Materials Corrosion,2013,64(1):50-59. [4] MONTICELLI C,BRUNORO G,ZUCCHI F.Inhibition of localized attack on the aluminum alloy AA 6351 in glycol/water solutions[J].Materials and Corrossion,1989,40(6):393-398. [5] VIGDOROVIVH V I,TSYGANKOVA L E.Corrosion of aluminum in sulfate ethylene glycol solutions[J].Corrosion Science,1993,13(2):215-222. [6] MONTICELLI C,BRUNORO G,FRIGNANI A.Corrosion behavior of the aluminum alloy AA 6351 in glycol/water solutions degraded at elevated temperature[J].Materials and Corrosion,1988,39(4):379-384. [7] 战广深,殷正安.NaCl溶液中氯离子浓度对铝合金电偶腐蚀的影响[J].材料保护,1994,27(2):20-23.ZHAN G S,YIN Z A.Effect of concentration of chloride in NaCl solution to galvanic corrosion of aluminum[J].Material Protection,1994,27(2):20-23(in Chinese). [8] ABIOLA O K,OTAIGBE J O E.Effect of common water contaminants on the corrosion of aluminum alloys in ethylene glycol-water solution[J].Corrosion Science,2008,50(1):242-247. [9] ZHOU W,AUNG N N,CHOUDHARY A.Heat-transfer corrosion behavior of cast Al alloy[J].Corrosion Science,2008,50(12):3308-3313. [10] ZAHARIEVA J,MILANOVA M,MITOV M,et al.Corrosion of aluminum and aluminum alloy in ethylene glycol-water mixtures[J].Journal of Alloys and Compounds,2009,470:397-403. [11] 范金龙,龚敏,侯肖,等.3A21铝合金在乙二醇水溶液中的腐蚀行为[J].腐蚀与防护,2014,35(11):1116-1121.FAN J L,GONG M,HOU X,et al.Corrosion behavior of 3A21 aluminum alloy in ethylene glycol water solution[J].Corrosion and Protection,2014,35(11):1116-1121(in Chinese). [12] FERIKY A M,FATAYERJI M Z.Electrochemical corrosion behavior of AZ91D alloy in ethylene glycol[J].Electrochimica Acta,2009,54(26):6522-6528. [13] LUO C,GAO M,SUN Z,et al.FIB-SEM investigation on corrosion propagation of aluminum-lithium alloy in sodium chloride solution[J].Corrosion Engineering Science and Technology:The International Journal of Corrosion Processes and Corrosion Control,2015,50(5):390-396. [14] XU L Y,CHENG Y F.Electrochemical characterization and CFD simulation of flow-assisted corrosion of aluminum alloy in ethylene glycol-water solution[J].Corrosion Science,2008,50(7):2004-2010. [15] LIU Y,CHENG Y F.Effects of coolant chemistry on corrosion of 3003 aluminum alloy in automotive cooling system[J].Material Corrosion,2010,61(7):574-578. [16] WONG D,SWETTE L.Aluminum corrosion in uninhibited ethylene glycol-water solutions[J].Journal of the Electrochemical Society,1979,126(1):11-15. [17] BAZELEVA N A,HERASYMENKO Y S.Corrosion-electrochemical behavior of aluminum alloys in aqueous ethylene glycol media[J].Material Science,2007,43(6):851-860. [18] LIU Y,CHENG Y F.Characterization of passivity and pitting corrosion of 3003 aluminum alloy in ethylene glycol-water solutions[J].Journal of Applied Electrochemstry,2011,41(2):151-159. [19] NIU L,CHENG Y F.Electrochemical characterization of metastable pitting of 3003 aluminum alloy in ethylene glycol-water solution[J].Material Society,2007,42(20):8613-8617. [20] ZHANG G A,XU Y L,CHENG Y F.Investigation of erosion-corrosion of 3003 aluminum alloy in ethylene glycol-water solution by impingement jet system[J].Corrosion Science,2009,51(2):283-290. [21] ZHANG G A,XU Y L,CHENG Y F.Mechanistic aspects of electrochemical corrosion of aluminum alloy in ethylene glycol-water solution[J].Electrochimica Acta,2008,53(28):8245-8252. [22] NIU L,CHENG Y F.Cathodic reaction kinetics and its implication on flow-assisted corrosion of aluminum alloy in aqueous ethylene glycol solution[J].Journal of Applied Electrochemistry,2009,39(8):1267-1272. [23] NIU L,CHENG Y F.Synergistic effects of fluid flow and sand particles on erosion-corrosion of aluminum in ethylene glycol-water solutions[J].Wear,2008,265(3-4):367-374.
点击查看大图
计量
- 文章访问数: 1834
- HTML全文浏览量: 146
- PDF下载量: 879
- 被引次数: 0