Numerical study on nonlinear characteristics of Rayleigh-Taylor instability
-
摘要: 以往对于单模态Rayleigh-Taylor(RT)不稳定性非线性特性的研究主要集中于推导和测量恒定的气泡推进速度上,而缺乏对液态尖钉区域非线性动力学特性的详细分析。采用耦合的Level-Set和Volume-of-Fluid(CLSVOF)界面捕捉方法对单模态RT不稳定性的发展过程进行了精确的数值模拟,并利用模拟得到的压力场和速度场信息对RT不稳定性非线性发展阶段的稳态动力学特性进行了分析。模拟结果表明,在液态尖钉根部由于惯性力作用而引起的水平冲击流会在此处形成一个局部最大压力点,由于此处惯性力与压强梯度的平衡,位于最大压力点附近的流动最终将达到稳态。通过理论分析,确定了此稳态流动中各稳态特征参数与初始扰动波长、惯性加速度之间的关系。这些特征参数的确定有助于将经典低速射流的相关理论扩展应用到RT不稳定性诱导雾化的研究领域。
-
关键词:
- Rayleigh-Taylor不稳定性 /
- 非线性 /
- 稳态 /
- CLSVOF方法 /
- 数值模拟
Abstract: The research on the nonlinear dynamics of Rayleigh-Taylor (RT) before mainly focused on deducing and measuring the constant penetration velocity of the bubble and had little detailed analysis of the nonlinear dynamic characteristics in the liquid spike region. An accurate numerical simulation of the single-mode RT instability was carried out based on the coupled Level-Set and Volume-of-Fluid (CLSVOF) interface capturing method. The detailed information on the pressure fields and velocity fields was obtained. In addition, the steady-state dynamic characteristics in the nonlinear development stage were analyzed. Simulation results show that a local maximum pressure point which is caused by the horizontal impinging flow with the action of inertial force appears at the root of the spike. The dependence of the different characteristic parameters of the steady flow on the initial perturbation wavelength and the inertial acceleration is determined. This work may extend the relevant classical theories of the low speed jet to the RT instability inducing atomization field.-
Key words:
- Rayleigh-Taylor instability /
- nonlinearity /
- steady state /
- CLSVOF method /
- numerical simulation
-
[1] ARNETT W D,BAHCALL J N,KIRSHNER R P,et al.Supernova 1987A[J].Annual Review of Astronomy and Astrophysics,1989,27(2):629-700. [2] NORMAN M L,SMARR L,SMITH M D,et al.Hydrodynamic formation of twin-exhaust jets[J].Astrophysical Journal,1981,247(1):52-58. [3] EVANS R G,BENNETT A J,PERT G J.Rayleigh-Taylor instabilities in laser accelerated targets[J].Physical Review Letters,1982,49(22):1639-1642. [4] LINDL J D,MCCRORY R L,CAMPBELL E M.Progress toward ignition and burn propagation in inertial confinement fusion[J].Physics Today,1992,45(9):32-40. [5] BEALE J C.Modeling spray atomization with the Kelvin-Helmholtz/Rayleigh Taylor hybrid model[J].Atomization and Sprays,1999,9(6):623-650. [6] KONG S C,SENECAL P K,REITZ R D.Developments in spray modeling in diesel and direct-injection gasoline engines[J].Oil & Gas Science & Technology,1999,54(2):197-204. [7] HSIANG L P,FAETH G M.Near-limit drop deformation and secondary breakup[J].International Journal of Multiphase Flow,1992,18(5):635-652. [8] LEE C H,REITZ R D.An experimental study of the effect of gas density on the distortion and breakup mechanism of drops in high speed gas stream[J].International Journal of Multiphase Flow,2000,26(2):229-244. [9] 解茂昭.燃油喷雾场结构和雾化机理[J].力学与实践,1990,12(4):9-15.XIE M Z.The structure of fuel spray field and the mechanism of atomization[J].Mechanics in Engineering,1990,12(4):9-15(in Chinese). [10] TAYLOR G.The instability of liquid surfaces when accelerated in a direction perpendicular to their planes.I[J].Proceedings of the Royal Society of London Series A,Mathematical and Physical Sciences,1950,201(1065):192-196. [11] BELLMAN R,PENNINGTON R H.Effects of surface tension and viscosity on Taylor instability[J].Quarterly of Applied Mathematics,1953,12(2):151-162. [12] PIRIZ A R,CORTÁZAR O D,CELA J J L,et al.The Rayleigh-Taylor instability[J].American Journal of Physics,2006,74(12):1095-1098. [13] SHARP D H.An overview of Rayleigh-Taylor instability[J].Physica D:Nonlinear Phenomena,1984,12(1-3):3-10. [14] GONCHAROV V N.Analytical model of nonlinear,single-mode,classical Rayleigh-Taylor instability at arbitrary Atwood numbers[J].Physical Review Letters,2002,88(13):134502. [15] BAKER G R,MCCRORY R L,VERDON C P,et al.Rayleigh-Taylor instability of fluid layers[J].Journal of Fluid Mechanics,1987,178:161-175. [16] RAMAPRABHU P,DIMONTE G,WOODWARD P,et al.The late-time dynamics of the single-mode Rayleigh-Taylor instability[J].Physics of Fluids,2012,24(7):074107. [17] RAMAPRABHU P,DIMONTE G,YOUNG Y N,et al.Limits of the potential flow approach to the single-mode Rayleigh-Taylor problem[J].Physical Review E,2006,74(6):202-212. [18] 叶文华.激光烧蚀RT不稳定性线性增长率和非线性行为的数值研究[J].强激光与粒子束,1998,10(4):567-572.YE W H.Numerical studies of linear growth rates and nonlinear evolution of laser ablative Rayleigh-Taylor instability[J].High Power Laser and Particle Beams,1998,10(4):567-572(in Chinese). [19] 叶文华,张维岩,陈光南,等.激光烧蚀瑞利-泰勒不稳定性数值研究[J].强激光与粒子束,1999,11(5):613-618.YE W H,ZHANG W Y,CHEN G N,et al.Numerical study of laser ablative Rayleigh-Taylor instability[J].High Power Laser and Particle Beams,1999,11(5):613-618(in Chinese). [20] 叶文华,张维岩,贺贤土.烧蚀瑞利-泰勒不稳定性线性增长率的预热致稳公式[J].物理学报,2000,49(4):762-767.YE W H,ZHANG W Y,HE X T.Preheating stabilization formula of linear growth rate for ablative Rayleigh-Taylor instability[J].Acta Physica Sinica,2000,49(4):762-767(in Chinese). [21] 程会方,段日强,姜胜耀.Rayleigh-Taylor不稳定性的MPS数值模拟[J].核动力工程,2010,31(s1):123-126.CHENG H F,DUAN R Q,JIANG S Y.Numerical simulation of Rayleigh-Taylor instability with MPS method[J].Nuclear Power Engineering,2010,31(s1):123-126(in Chinese). [22] BRACKBILL J U,KOTHE D B,ZEMACH C.A continuum method for modeling surface tension[J].Journal of Computational Physics,1992,100(2):335-354. [23] SUSSMAN M,PUCKETT E G.A coupled level set and volume-of-fluid method for computing 3D and axisymmetric incompressible two-phase flows[J].Journal of Computational Physics,2000,162(2):301-337. [24] VAN DER PIJL S P,SEGAL A,VUIK C,et al.A mass-conserving level-set method for modeling of multi-phase flows[J].International Journal for Numerical Methods in Fluids,2005,47(4):339-361. [25] LI Y,UMEMURA A.Two-dimensional numerical investigation on the dynamics of ligament formation by Faraday instability[J].International Journal of Multiphase Flow,2014,60(2):64-75. [26] BAKER G R,MEIRON D I,ORSZAG S A.Vortex simulations of the Rayleigh-Taylor instability[J].Physics of Fluids,1980,23(8):1485-1490. [27] CLANET C,LASHERAS J C.Transition from dripping to jetting[J].Journal of Fluid Mechanics,1999,383:307-326. [28] EGGERS J,VILLERMAUX E.Physics of liquid jets[J].Reports on Progress in Physics,2008,71(3):509-514. [29] SCHULKES R M S M.The evolution and bifurcation of a pendant drop[J].Journal of Fluid Mechanics,1994,278:83-100. [30] UMEMURA A.Self-destabilizing mechanism of a laminar inviscid liquid jet issuing from a circular nozzle[J].Physical Review E,2011,83(4):046307.
点击查看大图
计量
- 文章访问数: 1269
- HTML全文浏览量: 92
- PDF下载量: 656
- 被引次数: 0