Power dispatch of actuator of aircraft based on improved particle swarm optimization algorithm
-
摘要: 针对驱动飞机舵面的机电作动系统在轻载工况下电能浪费量大的问题,提出了多机电作动系统的驱动方案,为保证系统在最优的效率点附近工作,根据电动机效率和负载率之间的非线性关系,建立其功率调度的数学模型。改进了二进制和基本粒子群优化算法,并将2种算法互相嵌套,分别对机电作动系统组合方式和负荷分配进行交替迭代来求模型最优解,全局寻优能力强、收敛速度快;把投入工作的机电作动系统最小序号值引入适应度函数,解决了功率平衡约束,简化了运算;针对备用约束,建立系统启停优先顺序,提高了优化能力。仿真实验表明,改进的粒子群优化算法对飞机机电作动系统的功率调度有效,有助于飞机的能量优化。Abstract: In view of the large amount of electric energy waste caused by the small system load of aircraft electromechanical actuator, an electromechanical actuator system is designed. In order to make the system work in the near optimal efficiency, according to the nonlinear relationship between motor efficiency and load factor, a mathematical power dispatch model is also established. An improved basic particle swarm optimization algorithm and an improved binary particle swarm optimization algorithm are proposed, which has better global optimization ability and faster convergence speed. The proposed method takes the improved binary particle swarm optimization for outer unit combination and improved basic particle swarm optimization algorithm for inner economic load dispatch.The minimum number of running system was used to deal with power balance constraints,which simplifies the operation; in order to solve the spare constraint, a priority table of the system was established, which effectively improves the capability of optimization.The results of simulation experiment show that the improved particle swarm optimization algorithm is effective for power dispatch of electromechanical actuator and it is conducive to the energy optimization of aircraft.
-
[1] 葛玉雪,宋笔锋,裴扬.基于可用能的多电飞机能量利用率分析方法[J].航空学报,2014,35(5):1276-1283.GE Y X,SONG B F,PEI Y.Analysis method of more-electric aircraft energy efficiency based on exergy[J].Acta Aeronautica et Astronautica Sinica,2014,35(5):1276-1283(in Chinese). [2] O'CONNELL T,RUSSELL G,MCCARTHY K,et al.Energy management of an aircraft electrical system: AIAA-2010-7092[R].Reston:AIAA,2010. [3] WALTERS E A,IDEN S,MCCARTHY K,et al.INVENT,modeling,simulation,analysis and optimization[M].Reston:AIAA,2010:287-288. [4] FRENCH M,KUHN F,BERGMAN S.System architecture studies for the energy optimized aircraft: AIAA-2013-0882[R].Reston:AIAA,2013. [5] GRIGGS S C,IDEN S M,LAMM P T.Energy optimized aircraft:What is it and how do we make one[J].SAE International Journal of Aerospace,2012,5(2):415-424. [6] 郭宏,邢伟.机电作动系统发展[J].航空学报,2007,28(3):620-627.GUO H,XING W.Development of eletromechanical actuators[J].Acta Aeronautica et Astronautica Sinica,2007,28(3):620-627(in Chinese). [7] 王子熙.美国能量优化飞机设计方法与关键技术[J].航空科学技术,2014,2(5):7-12.WANG Z X.Design method and key technologies of US energy optimized aircraft[J].Aeronautical Science & Technology,2014,2(5):7-12(in Chinese). [8] ROSERO J A,ORTEGA J A,ALDABAS E,et al.Moving towards a more electric aircraft[J].IEEE Aerospace and Electronic Systems Magazine,2007,22(3):3-9. [9] 刘志东.基于智能体技术的飞机电力作动系统控制策略研究[D].西安:空军工程大学,2012:1-6.LIU Z D.The control strategy of aircraft actuation based on multi-agent[D].Xi'an:Air Force Engineering University,2012:1-6(in Chinese). [10] 严仰光,秦海鸿,龚春英,等.多电飞机与电力电子[J].南京航空航天大学学报,2014,46(1):11-18.YAN Y G,QIN H H,GONG C Y,et al.More electric aircraft and power electronics[J].Journal of Nanjing University of Aeronautics and Astronautics,2014,46(1):11-18(in Chinese). [11] AKAY B.A study on particle swarm optimization and artificial bee colony algorithms for multilevel thresholding[J].Applied Soft Computing,2013,13(6):3066-3091. [12] 刘逸.粒子群优化算法的改进及应用研究[D].西安:西安电子科技大学,2012:5-13.LIU Y.Improvements and applications of particle swarm optimization algorithm[D].Xi'an:Xidian University,2012:5-13(in Chinese). [13] 周胜,赵凯.电机系统节能实用指南[M].北京:机械工业出版社,2009:24-25.ZHOU S,ZHAO K.Practical guide of motor system energy saving[M].Beijing:Mechanical Industry Press,2009:24-25(in Chinese). [14] KENNEDY J,EBERHART R.Particle swarm optimization[C]//IEEE International Conference on Neural Networks.Piscataway,NJ:IEEE Press,1995:1942-1948. [15] 居凤霞.粒子群优化算法的改进及应用[D].广州:华南理工大学,2014:10-11.JU F X.Modification and application of particle swarm optimization algorithm[D].Guangzhou:South China University of Technology,2014:10-11(in Chinese). [16] 陈贵敏,贾建援,韩琪.粒子群优化算法的惯性权值递减策略研究[J].西安交通大学学报,2006,40(1):53-56.CHEN G M,JIA J Y,HAN Q.Study on the strategy of decreasing inertia weight in particle swarm optimization algorithm[J].Journal of Xi'an Jiaotong University,2006,40(1):53-56(in Chinese). [17] SHI Y,EBERHART R.Empirical study of particle swarm optimizer[C]//International Conferences on Evolutionary Computation.Piscataway,NJ:IEEE Press,1999:1945-1950. [18] 汤可宗.遗传算法与粒子群优化算法的改进及应用研究[D].南京:南京理工大学,2011:67-68.TANG K Z.Modifications and application research on genetic algorithm and particle swarm optimization algorithm[D].Nanjing:Nanjing University of Science & Technology,2011:67-68(in Chinese).
点击查看大图
计量
- 文章访问数: 919
- HTML全文浏览量: 166
- PDF下载量: 601
- 被引次数: 0