留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双支板超燃冲压发动机燃烧特性研究

纪鹏飞 徐旭 陈兵 朱韶华 刘刚

纪鹏飞, 徐旭, 陈兵, 等 . 双支板超燃冲压发动机燃烧特性研究[J]. 北京航空航天大学学报, 2017, 43(2): 366-374. doi: 10.13700/j.bh.1001-5965.2016.0097
引用本文: 纪鹏飞, 徐旭, 陈兵, 等 . 双支板超燃冲压发动机燃烧特性研究[J]. 北京航空航天大学学报, 2017, 43(2): 366-374. doi: 10.13700/j.bh.1001-5965.2016.0097
JI Pengfei, XU Xu, CHEN Bing, et al. Combustion performance investigation of a dual-struts scramjet[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(2): 366-374. doi: 10.13700/j.bh.1001-5965.2016.0097(in Chinese)
Citation: JI Pengfei, XU Xu, CHEN Bing, et al. Combustion performance investigation of a dual-struts scramjet[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(2): 366-374. doi: 10.13700/j.bh.1001-5965.2016.0097(in Chinese)

双支板超燃冲压发动机燃烧特性研究

doi: 10.13700/j.bh.1001-5965.2016.0097
基金项目: 

国家自然科学基金 51276007

详细信息
    作者简介:

    纪鹏飞, 男, 硕士研究生。主要研究方向:超燃冲压发动机技术

    徐旭, 男, 博士, 教授。主要研究方向:超燃冲压发动机技术

    通讯作者:

    徐旭, E-mail:xuxu@buaa.edu.cn

  • 中图分类号: V235.123

Combustion performance investigation of a dual-struts scramjet

Funds: 

National Natural Science Foundation of China 51276007

More Information
  • 摘要:

    为研究分级喷注超燃冲压发动机火焰稳定、燃烧状态及火焰传播特性,以双支板超燃燃烧室为基本构型,开展了当量比连续调节试验研究。模拟低飞行马赫数5.5工况,燃烧室入口马赫数为2,总温1 436 K,试验表明:燃烧室单独上游喷注熄火当量比为0.19,该值不受下游燃烧的影响;单独下游喷注熄火当量比为0.46,上游火焰会削弱下游当量比变化对壁面压力的影响,并且会使下游熄火当量比值降低。通过调节上游当量比可实现燃烧状态的转换,转换过程存在迟滞。模拟高飞行马赫数6.5工况,燃烧室入口马赫数为3,总温1 899 K,试验表明:随着总温的增加,单独上游喷注可实现点火和稳焰,上游火焰发生抬举,燃烧室抗反压能力增强,可喷注更多燃料。

     

  • 图 1  燃烧室、支板和观察窗结构

    Figure 1.  Configurations of combustion chamber, struts and inspection window

    图 2  可调文氏管结构

    Figure 2.  Structure of adjustable venturi

    图 3  可调文氏管流量

    Figure 3.  Mass flow rate of adjustable venturi

    图 4  Case 1不同上游当量比壁面压力分布

    Figure 4.  Wall pressure distribution of Case 1 with different upstream equivalence ratios

    图 5  Case 1不同上游当量比马赫数分布

    Figure 5.  Mach number distribution of Case 1 with different upstream equivalence ratios

    图 6  Case 2特征点压力随时间的变化

    Figure 6.  Time history of feature points pressure of Case 2

    图 7  Case 2不同下游当量比壁面压力分布

    Figure 7.  Wall pressure distribution of Case 2 with different downstream equivalence ratios

    图 8  Case 4和Case 1不同上游当量比壁面压力分布

    Figure 8.  Wall pressure distribution of Case 4 and Case 1 with different upstream equivalence ratios

    图 9  Case 5文氏管后压力随时间的变化

    Figure 9.  Case 5 time history of pressure after venturi

    图 10  Case 5特征点压力随时间的变化

    Figure 10.  Case 5 time history of feature points pressure

    图 11  Case 5不同下游当量比壁面压力分布

    Figure 11.  Wall pressure distribution of Case 5 with different downstream equivalence ratios

    图 12  Case 6文氏管后压力随时间的变化

    Figure 12.  Time history of pressure after venturi of Case 6

    图 13  Case 6特征点压力随时间的变化

    Figure 13.  Time history of feature points pressure of Case 6

    图 14  上游火焰瞬态图像(Δt=0.5 ms)

    Figure 14.  Transient image of upstream flame (Δt=0.5 ms)

    图 15  数值模拟边界层分离区

    Figure 15.  Separation zone of boundary layer in simulation

    图 16  Case 6不同上游当量比壁面压力分布

    Figure 16.  Wall pressure distribution of Case 6 with different upstream equivalence ratios

    图 17  Case 7不同上游当量比壁面压力分布

    Figure 17.  Wall pressure distribution of Case 7 with different upstream equivalence ratios

    表  1  入口参数

    Table  1.   Inlet parameters

    入口参数
    类别
    总质量流量/
    (kg·s-1)
    模拟飞行
    马赫数
    马赫数 总温/K 总压/MPa
    a 2.655 5.5 2.0 1 436 0.78
    b 2.044 6.5 3.0 1 899 2.13
    下载: 导出CSV

    表  2  试验工况

    Table  2.   Experiment condition

    工况 入口参数类别 上游当量比(线性匀速调节) 下游当量比(线性匀速调节) 当量比调节时间/s
    Case 1 a 0.3减少至0.1 0.7 3
    Case 2 a 0 0.6减少至0.3 2
    Case 3 a 0.3减少至0.1 0 3
    Case 4 a 0.3减少至0.1 0.6,点火后变至0 3
    Case 5 a 0.4 0.6减少至0.3,再增加至0.6 2.4
    Case 6 a 0.4减少至0.1,再增加至0.4 0.7 2.4
    Case 7 b 0.5减少至0.3,再增加至0.5 0 2.4
    下载: 导出CSV
  • [1] 徐旭,陈兵,徐大军.冲压发动机原理及技术[M].北京:北京航空航天大学出版社,2014:202-204.

    XU X,CHEN B,XU D J.Principle and technology of ramjet[M].Beijing:Beihang University Press,2014:202-204(in Chinese).
    [2] ROGERS R C, CAPRIOT TI D P, GUY R W.Experimental supersonic combustion research at NASA Langley:AIAA-1998-2506[R].Reston:AIAA,1998.
    [3] 宋冈霖,冮强,王辽,等.碳氢燃料超燃冲压发动机支板凹腔一体化稳焰性能研究[J].推进技术,2013,34(11):1499-1506. http://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201311008.htm

    SONG G L,GANG Q,WANG L,et al. Studies of strut-cavity flameholder performance in scramjet combustor with hydrocarbon fuel[J]. Journal of Propulsion Technology,2013,34(11):1499-1506(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201311008.htm
    [4] TABEJAMAAT S,KOBAYASHI H,NIIOKIA T.Numerical and experimental studies of injection modeling for supersonic flame-holding[J].Journal of Propulsion and Power,2005,21(3):504-511. doi: 10.2514/1.8307
    [5] 范周琴,刘卫东,林志勇,等.支板喷射超声速燃烧火焰结构实验[J].推进技术,2012,33(6):923-927. http://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201206015.htm

    FAN Z Q, LIU W D,LIN Z Y,et al. Experimental investigation of supersonic combustion flame structure with strut injectors[J].Journal of Propulsion Technology,2012,33(6):923-927(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201206015.htm
    [6] 苏义,刘卫东.支板阻力特性实验[J].航空动力学报,2009,24(12):2643-2648. http://www.cnki.com.cn/Article/CJFDTOTAL-HKDI200912001.htm

    SU Y, LIU W D.Experimental investigation on drag of strut[J].Journal of Aerospace Power,2009,24(12):2643-2648(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-HKDI200912001.htm
    [7] TOMIOKA S, MURAKAMIT A,KUDO K,et al.Effects of injection scheme on performance of a staged supersonic combustor:AIAA-1999-2107[R].Reston:AIAA,1999.
    [8] TOMIOKA S,KOBAYASHI K,KUDO K,et al.Distributed injection for performance improvement of a supersonic combustor with multi-staged wall-injections:AIAA-2003-6991[R].Reston:AIAA,2003.
    [9] TOMIOKA S, MURAKAMI A,KUDO K,et al.Combustion tests of a staged supersonic combustor with a strut[J].Journal of Propulsion and Power,2001,17(2):293-300. doi: 10.2514/2.5741
    [10] VELLARAMKALAYIL J J,SCHEUERMANN T.Analysis of a two-staged supersonic combustion chamber using experiments and simulations:AIAA-2011-2247[R].Reston:AIAA,2011.
    [11] FUHRMANN S,HUPFER A,KAU H P.The investigations on multi-stage supersonic combustion in a model combustor:AIAA-2011-2332[R].Reston:AIAA,2011.
    [12] NAKAYA S,HIKICHI Y,NAKAZAWA Y,et al.Ignition and supersonic combustion behavior of liquid ethanol in a scramjet model combustor with cavity flame holder[J].Proceedings of the Combustion Institute,2015,35(2):2091-2099. doi: 10.1016/j.proci.2014.07.023
    [13] HANDE R O,MARATHE A G.A computational study on supersonic combustion with struts as flame holder:AIAA-2008-4712[R].Reston:AIAA,2008.
    [14] 宗有海.基于支板喷射技术的液体碳氢燃料超声速燃烧组织研究[D].哈尔滨:哈尔滨工业大学,2013. http://cn.bing.com/academic/profile?id=d3740275a45fca37bda26c88d3046c9c&encoded=0&v=paper_preview&mkt=zh-cn

    ZONG Y H. Combustion organization of liquid hydrocarbon fueled scramjet based on strut injection technology[D]. Harbin:Harbin Institute of Technology,2013(in Chinese). http://cn.bing.com/academic/profile?id=d3740275a45fca37bda26c88d3046c9c&encoded=0&v=paper_preview&mkt=zh-cn
    [15] FAN X J,YU G,LI J G. Performance of supersonic model combustors with distributed injection of supercritical kerosene:AIAA-2007-5406[R].Reston:AIAA,2007.
    [16] 冮强,周乐仪,覃正,等.液体碳氢燃料超燃冲压发动机支板凹槽稳焰技术试验[J].推进技术,2011,32(5):680-683. http://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201105014.htm

    GANG Q,ZHOU L Y,QIN Z,et al.Experimental investigation of strut-cavity flameholder technology in liquid hydrocarbon fueled scramjet combustor[J].Journal of Propulsion Technology,2011,32(5):680-683(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201105014.htm
  • 加载中
图(17) / 表(2)
计量
  • 文章访问数:  842
  • HTML全文浏览量:  84
  • PDF下载量:  352
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-01-26
  • 录用日期:  2016-03-25
  • 网络出版日期:  2017-02-20

目录

    /

    返回文章
    返回
    常见问答