-
摘要:
针对传统的前向小角散射粒径测量系统中心光过强、杂散光干扰、散射角过小等缺点,本文采用一种新型的近场散射(NFS)方法测量前向小角散射光,研究并搭建了基于近场散射的颗粒粒径测量系统,将最大散射角提高到40.5°;在无需空白测量的情况下采用差分方法对透射光和散射光干涉成的散斑图像进行处理,有效去除中心光和杂散光的影响;对差分散斑图像进行快速傅里叶变换(FFT)频谱处理得到散射光强分布,利用Chahine算法对颗粒粒径进行了反演。最后,利用已知粒径(39.2 μm和67.3 μm)的标准颗粒对测量系统的准确性进行了单峰分布的验证,测量误差在5%之内;对于粒径为39.2 μm和67.3 μm的混合颗粒进行了双峰分布验证,在43.3 μm和74.1 μm处出现峰值,测量误差在10%左右。
-
关键词:
- 粒径测量 /
- 近场散射(NFC) /
- 差分散斑 /
- 快速傅里叶变换(FFT) /
- Chahine算法
Abstract:To solve the problems such as high intensity of transmitted light, stray light interference and small scattering angle in the traditional low-angle light scattering techniques, a novel near field scattering (NFS) was adopted to derive the traditional low-angle scattering intensity. A particle size measurement system based on near filed scattering was proposed and built with the scattering angle up to 40.5°. Heterodyne method was applied to process the near field speckle images generated by interference between the transmitted and scattered fields, which is capable of completely removing the stray light. The angular intensity distribution was determined by fast Fourier transform (FFT) frequency spectral analysis of the heterodyne signal. The particle size distributions were inversed by Chahine algorithm. Experimental results on measurement of both monodisperse and bimodal samples with known diameters which are 39.2 μm and 67.3 μm, was presented. For monodisperse samples, the measurement error was less than 5%, for bimodal samples, there was two apparent peaks in 43.3 μm and 74.1 μm, the error was about 10%.
-
表 1 2种标准聚苯乙烯乳胶球
Table 1. Two certified polystyrene latex spheres
编号 直径/μm GBW (E)120028 39.2±0.6 GBW (E)120047 67.3±3.8 表 2 标准聚苯乙烯乳胶球测量值对比
Table 2. Comparison between the measurements of certified polystyrene latex spheres
标定直径/μm 测量直径/μm 误差/% 39.2±0.6 40.3±1.9 3.8 67.3±3.8 68.7±2.4 4.0 -
[1] 邵鸿飞, 柴娟, 黄辉.粒度分析及粒度标准物质研究进展[J].化学分析计量, 2012, 21(2):99-101. http://www.cnki.com.cn/Article/CJFDTOTAL-HXFJ201202033.htmSHAO H F, CHAI J, HUANG H.Research progress of particle size analysis and particle size standard reference material[J].Chemical Analysis and Meterage, 2012, 21(2):99-101(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-HXFJ201202033.htm [2] 王乃宁.颗粒粒径的光学测量技术及应用[M].北京:原子能出版社, 2002:168-175.WANG N N.Optic Measurement technology of particle size and its application[M].Beijing:Atomic Energy Press, 2002:168-175(in Chinese). [3] FERRI F.Use of a charge coupled device camera for low-angle elastic light scattering[J].Review of Scientific Instruments, 1997, 68(6):2265-2274. doi: 10.1063/1.1148135 [4] 王式民, 陆勇, 叶茂.前向小角散射法测量颗粒平均尺寸[J].武汉大学学报(自然科学版), 1997, 43(5):691-696. http://www.cnki.com.cn/Article/CJFDTOTAL-WHDY705.026.htmWANG S M, LU Y, YE M.Measurement of the particle mean size by the ratio of the scattering light intensitied at small angles near-forward[J].Journal of Wuhan University (Natural Science Edition), 1997, 43(5):691-696(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-WHDY705.026.htm [5] BROGIOLI D, VAILATI A, GIGLIO M.Heterodyne near-field scattering[J].Applied Physics Lertters, 2002, 81(22):4109-4111. doi: 10.1063/1.1524702 [6] SCHEFFOLD F, CERBINO R.New trends in light scattering[J].Current Opinion in Colloid & Interface Science, 2007, 12(1):50-57. http://www.academia.edu/571719/New_trends_in_light_scattering [7] MAGATTI D, ALAIMO M D, POTENZA M A C, et al.Dynamic heterodyne near field scattering[J].Applied Physics Lertters, 2008, 92(24):241101-1-241101-3. doi: 10.1063/1.2937841 [8] CERBINO R, VAILATI A.Near-field scattering techniques:Novel instrumentation and results from time and spatially resolved investigations of soft matter systems[J].Current Opinion in Colloid & Interface Science, 2009, 14(6):416-425. https://www.researchgate.net/publication/223425976_Near-field_scattering_techniques_Novel_instrumentation_and_results_from_time_and_spatially_resolved_investigations_of_soft_matter_systems [9] DAINTY J C.Laser speckle and related phenomena[M].Berlin:Springer-Verlag, 1984:132-135. [10] BORN M, WOLF E, HECHT E.Principles of optics:Electromagnetic theory of propagation, interference and diffraction of light[J].Brain Research Molecular Brain Research, 2005, 141(1):30-38. doi: 10.1016/j.molbrainres.2005.07.012 [11] GIGLIO M, BROGIOL D, POTENZA M A C, et al.Near field scattering[J].Physical Chemistry Chemical Physics, 2004, 6(7):1547-1550. doi: 10.1039/B314600F [12] DORIANO B.Near filed speckles[D].Milano:Universita di Milano and INFM, 2009:73. [13] POTENZA M A C, PESCINI D, MAGATTI D, et al.A new particle sizing technique based on near field scattering[J].Nuclear Physics B-Proceedings Supplements, 2006, 150(1):334-338. https://www.researchgate.net/publication/222691146_A_new_particle_sizing_technique_based_on_near_field_scattering?_sg=DZTjFyNcmOMYFcICFBywEZwGyxbxp-j2ZOooO9prrf0Qni0_EQDebAHJYM_YLG0n0Lc8fVB2xr6wi_9_py8UMQ [14] FERRI F, MAGATTI D, PESCINI D, et al.Heterodyne near-field scattering:A technique for complex fluids[J].Physical Review E Statistical Nonlinear & Soft Matter Physics, 2004, 70(4 Pt 1):174-195. https://www.researchgate.net/publication/8130362_Heterodyne_near-field_scattering_A_technique_for_complex_fluids [15] KOUZELIS D, CANDEL S M, ESPOSITO E, et al.Particle sizing by laser light diffraction:Improvements in optics and algorithms[J].Particle & Particle Systems Characterization, 1987, 4(1-4):151-156. http://cn.bing.com/academic/profile?id=965479ab3fc16d0bec8e918d78537a3f&encoded=0&v=paper_preview&mkt=zh-cn [16] 曹丽霞.基于静态光散射的颗粒粒度检测技术的研究[D].杭州:中国计量学院, 2015:27-30.CAO L X.Research on measurement technology of particle size based on static light scattering[D].Hanzhou:China Jiliang University, 2015:27-30(in Chinese). [17] 曹丽霞, 赵军, 孔明, 等.基于改进的Chahine迭代算法的粒径分布反演[J].红外与激光工程, 2015, 44(9):2837-2843. http://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201509052.htmCAO L X, ZHAO J, KONG M, et al.Inversion of particle size distribution based on improved Chahine algorithm[J].Infrared and Laser Engineering, 2015, 44(9):2837-2843(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201509052.htm