Influence of loss of three-dimensional information on manipulator teleoperation mission
-
摘要:
视觉作为人认知环境的主要信息通道,在空间遥操作任务中有极其重要的作用。本研究面向空间站机械臂遥操作任务,通过对24名被试进行机械臂遥操作模拟平台实验,探索不同程度空间立体信息缺失对机械臂遥操作绩效、脑力负荷、距离感知和情境意识的影响,剖析不同立体信息在遥操作过程中的作用。实验结果表明:局部立体信息对提高遥操作任务完成率、减少撞击操作等指标有重要作用;而全局立体信息更有利于减少机械臂冗余行走距离和限位操作次数;两者对脑力负荷水平的降低有显著影响,而对距离估计偏差和情境意识水平影响不显著。因此,根据不同任务类型选取合适的立体信息补偿,从多个角度完善立体信息的呈现对于保障遥操作任务的顺利进行具有重要意义。
Abstract:As the main information channel via that human cognitive environment, visual information plays an extremely important role in the space teleoperation mission. Aimed at the future station robotics teleoperation mission, twenty four subjects were recruited to finish the simulation task, so as to investigate the effect of different extent of three-dimensional information loss on human performance, mental workload, distance perception and situation awareness, and to study the role of spatial information in teleoperation. The results show that the local stereo information plays an important role in improving the completion rate and reducing collision of the teleoperation mission; the global spatial information are more advantageous to reduce redundant flying distance and the times of limit operation; both the two kinds of information have a significant influence on reducing mental load level, but have few effect on distance estimation error and situation awareness level. Therefore, it is important to select the suitable stereo information compensation type according to the tasks and to optimize the stereo information display with various methods for completing teleoperation task smoothly.
-
表 1 绩效指标
Table 1. Performance indicators
绩效指标 描述 对接成功与否 是否在规定时间完成对接 多轴操作效率 多轴操作的持续时间占的百分率 任务完成时间 完成时间或失败时间 末端“行走”的多余距离 机械臂的最终行走距离减去初始距离偏差 位置偏差 机械臂负载与目标的最终距离偏差 角度偏差 机械臂负载与目标的最终角度偏差 错误操作次数 向一个方向操纵了手柄,随即发现该方向错误,于是改向相反方向操作 对接碰撞次数 与目标物碰撞的次数 关节限位次数 任一关节到达限位角度极限的次数 临近工作空间次数(close次数) 机械臂末端或关节过于靠近工作区域边缘的次数 表 2 绩效相关性分析结果
Table 2. Correlation analysis results of performance indicators
相关系数 碰撞次数 限位次数 平均操作时间 错误操作次数 多余行走距离 多轴操作效率 close次数 位置偏差 角度偏差 成功率 -0.195(0.057) -0.394** -0.702** -0.536** -0.425** 0.179(0.081) -0.075 -0.568** -0.730** 碰撞次数 - -0.046 0.164 0.144 0.250* 0.217* 0.290** 0.053 0.263** 限位次数 - 0.338** 0.117 0.168 0.007 0.030 0.314** 0.390** 平均操作时间 - 0.499** 0.468** -0.380** 0.094 0.386** 0.512** 错误操作次数 - 0.563** -0.022 0.094 0.338** 0.455** 多余行走距离 - 0.170 0.266** 0.207* 0.293** 多轴操作效率 - 0.265** -0.158 -0.145 close次数 - 0.026 0.010 位置偏差 - 0.655** 注:*代表0.01 < P < 0.05,**代表P < 0.01,P为显著性概率值,括弧内为边缘显著性P值,下同。 表 3 4种水平绩效成对比较结果
Table 3. Paired comparison results of performance at four levels
均值差 A-B A-C A-D B-C B-D C-D 成功率/% -0.100(0.076) -0.200* -0.225* -0.100 -0.125(0.053) -0.025 碰撞次数 0.325(0.057) 0.558** 0.467* 0.233 0.142 -0.092 限位次数 0.642 0.225 0.525 -0.417 -0.117 0.300 平均操作时间/s -0.810 2.425 2.082 3.235 2.892 -0.343 错误操作次数 4.358 6.375 5.117 2.017 0.758 -1.258 多余行走距离/m 0.055 0.034 0.059 -0.022 0.003 0.025 多轴操作效率/% -0.004 -0.024 0.000 -0.010 0.004 0.014 close次数 -1.333 1.208 0.708 2.542* 2.042(0.058) -0.500 位置偏差/m 0.001 0.002(0.061) 0.002* 0.001 0.002 0.000 角度偏差/(°) 0.344 1.059** 1.156** 0.715(0.092) 0.811* 0.096 表 4 4种水平脑力负荷成对比较结果
Table 4. Paired comparison results of mental workload at four levels
信息水平 A-B A-C A-D B-C B-D C-D 均值 9.504 26.879* 28.337* 17.375* 18.833* 1.458 -
[1] 薛书骐, 姜国华, 田志强, 等.空间遥操作任务中显控界面关键技术研究进展[J].载人航天, 2014, 20(5):497-502. http://www.cnki.com.cn/Article/CJFDTOTAL-ZRHT201405017.htmXUE S Q, JIANG G H, TIAN Z Q, et al.Progress of the key technologies in human-computer interface in space teleoperation[J].Manned Spaceflight, 2014, 20(5):497-502(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-ZRHT201405017.htm [2] MONFERRER A, BONYUET D.Cooperative robot teleoperation through virtual reality interfaces[C]//Proceedings of 6 th International Conference on Information Visualisation, 2002.Piscataway, NJ:IEEE Press, 2002:243-248. [3] YOU S, WANG T, EAGLESON R, et al.A low-cost internet-based telerobotic system for access to remote laboratories[J].Artificial Intelligence in Engineering, 2001, 15(3):265-279. doi: 10.1016/S0954-1810(01)00003-6 [4] FORMAN R E.Objective performance metrics for improved space telerobotics training[D].Cambridge:Massachusetts Institute of Technology, 2011:51-52. [5] 陈善广, 王春慧, 陈晓萍, 等.长期空间飞行中人的作业能力变化特性研究[J].航天医学与医学工程, 2015, 28(1):1-10. http://www.cnki.com.cn/Article/CJFDTOTAL-HYXB201501001.htmCHEN S G, WANG C H, CHEN X P, et al.Study on changes of human performance capabilities in long-duration spaceflight[J].Space Medicine & Medical Engineering, 2015, 28(1):1-10(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-HYXB201501001.htm [6] LAPOINTE J F, DUPUIS E, HARTMAN L, et al.An analysis of low-earth orbit space operations[C]//Proceedings of the Joint Association of Canadian Ergonomists/Applied Ergonomics Conference.Ottawa:NRC, 2002:1-5. [7] WOODS D D, TITTLE J, FEIL M, et al.Envisioning human-robot coordination in future operations[J].IEEE Transactions on Systems, Man, and Cybernetics, Part C:Applications and Reviews, 2004, 34(2):210-218. doi: 10.1109/TSMCC.2004.826272 [8] LAMB P, OWEN D.Human performance in space telerobotic manipulation[C]//Proceedings of the ACM Symposium on Virtual Reality Software and Technology.New York:ACM, 2005:31-37. [9] DEJONG B P, COLGATE J E, PESHKIN M A.Improving teleoperation:Reducing mental rotations and translations[C]//Proceedings of IEEE International Conference on Robotics and Automation, 2004(ICRA'04).Piscataway, NJ:IEEE Press, 2004, 4:3708-3714. [10] MENCHACA-BRANDAN M A, LIU A M, OMAN C M, et al.Influence of perspective-taking and mental rotation abilities in space teleoperation[C]//Proceedings of the ACM/IEEE International Conference on Human-Robot Interaction.New York:ACM, 2007:271-278. [11] 陈善广, 姜国华, 王春慧.航天人因工程研究进展[J].载人航天, 2015, 21(2):95-105. http://www.cnki.com.cn/Article/CJFDTOTAL-ZRHT201502004.htmCHEN S G, JIANG G H, WANG C H.Advancement in space human factors engineering[J].Manned Spaceflight, 2015, 21(2):95-105(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-ZRHT201502004.htm [12] 霍尔R D, 谢勒D J.联盟号飞船[M].周晓飞, 张柏楠, 尚志, 等, 译.北京:中国宇航出版社, 2006:336-338.HALL R D, SHAYLER D J.Soyuz spacecraft[M].ZHOU X F, ZHANG B N, SHANG Z, et al, translated.Beijing:China Astronautic Publishing House, 2006:336-338(in Chinese). [13] 周前祥.载人航天中人的可靠性问题及研究进展[J].中国航天, 2000(12):34-38. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGHT200012015.htmZHOU Q X.Reliability research of human in manned spaceflight[J].Aerospace China, 2000(12):34-38(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-ZGHT200012015.htm [14] 郭秀艳.实验心理学[M].2版.北京:人民卫生出版社, 2013:49-54.GUO X Y.Experimental psychology[M].2nd ed.Beijing:People's Medical Publishing House, 2013:49-54(in Chinese). [15] RUBIO S, DIAZ E, MARTIN J, et al.Evaluation of subjective mental workload:A comparison of SWAT, NASA-TLX, and workload profile methods[J].Applied Psychology, 2004, 53(1):61-86. doi: 10.1111/apps.2004.53.issue-1 [16] 肖元梅.脑力劳动者脑力负荷评价及其应用研究[D].成都:四川大学, 2005.XIAO Y M.Study on evaluation and its application of mental worker's mental workload[D].Chengdu:Sichuan University, 2005(in Chinese). [17] ENDSLEY M R, GARLAND D J.Situation awareness analysis and measurement[M].Boca Raton:CRC Press, 2000:203-223. [18] 侯建.月球车立体视觉与视觉导航方法研究[D].哈尔滨:哈尔滨工业大学, 2007.HOU J.Research on stereo vision and visual navigation for a lunar rover[D].Harbin:Harbin Institute of Technology, 2007(in Chinese). [19] 唐志勇, 张力.数字化控制系统中操纵员心理负荷及其影响因素分析[J].价值工程, 2008, 23(5):53-56. http://www.cnki.com.cn/Article/CJFDTOTAL-JZGC201201007.htmTANG Z Y, ZHANG L.Analysis of operators' mental workload and its influencing factors in digitalization control system[J].Value Engineering, 2008, 23(5):53-56(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-JZGC201201007.htm [20] 李鹏程, 张力, 戴立操, 等.核电厂数字化人-机界面特征对人因失误的影响研究[J].核动力工程, 2011, 32(1):48-52.LI P C, ZHANG L, DAI L C, et al.Effects of digital human-machine interface characteristics on human error in nuclear power plants[J].Nuclear Power Engineering, 2011, 32(1):48-52(in Chinese). [21] 邓成龙.视觉注意影响距离感知[D].上海:华东师范大学, 2014.DENG C L.Visual attention can affect perceived distance[D].Shanghai:East China Normal University, 2014(in Chinese).