-
摘要:
随着多电飞机技术的发展,电静液作动器(EHA)被更多地用于机载作动系统。双余度电静液作动器(DREHA)更易于实现余度控制,推进EHA在飞机上的应用。本文给出了一种新型DREHA的结构组成,并对其工作原理和固有的力纷争现象进行了分析。理想情况下,通过流量补偿进行修正,力纷争会消失。由于实际系统的参数不可能与仿真模型完全一致,通过人为引入两通道参数误差,复现实际的力纷争。针对上述力纷争现象,基于两通道左右腔压差提出了差值力补偿力均衡控制策略和交叉耦合力均衡控制策略,以减小力纷争。MATLAB和AMESim联合仿真结果表明,本文所设计的力均衡控制器能大大减小力纷争峰值,同时提高系统的响应速度。
Abstract:With the development of key technologies about more/all electric aircraft, electro-hydrostatic actuator (EHA) is widely applied in aircraft actuation system. Dual-redundancy electro-hydrostatic actuator (DREHA) is easy to realize effortless redundancy design, and improve the reliability of its use in aircraft. The structure of a novel DREHA is presented, and then the working principle and the intrinsic force fighting phenomenon are analyzed. Ideally, the force fighting disappears by flow compensation. Simulating model cannot be identical with the actual DREHA system completely, so the parameter error is set factitiously in model, and a big force fighting is observed again. Aimed at the phenomenon of force fighting, force difference compensation control and cross-coupling control are proposed to eliminate force fighting based on the pressure of two channels. The results of co-simulation based on MATLAB and AMESim indicate that the controller designed to eliminate force fighting can strongly decrease the amplitude of force fighting and improve the system response speed greatly.
-
表 1 DREHA系统参数
Table 1. Parameters of DREHA system
参数 数值 电机最大转速ωmax/(r·min-1) 10 000 柱塞泵排量qp/(cc·r-1) 1 无刷直流电机定子绕组电阻R/Ω 0.245 无刷直流电机定子绕组电感L/H 3.36×10-4 无刷直流电机电磁转矩系数Cm/(N·m·A-1) 0.215 无刷直流电机反电势系数Ce/(V·(rad·s-1)-1) 0.215 电机-泵的转动惯量J/(kg·m2) 1.6×10-3 电机-泵的阻尼系数B/(N·m·(rad·s-1)-1) 6.0×10-4 作动筒的总泄漏系数Csl/((m3·s-1)·Pa-1) 2.5×10-12 通道1活塞有效面积A1/m2 1.83×10-3 通道1系统容腔的总容积V1/m3 2.0×10-4 通道2活塞有效面积A2/m2 2.46×10-3 通道2系统容腔的总容积V2/m3 2.6×10-4 液压油的等效体积弹性模量Ey/(N·m-2) 6.86×108 活塞及负载的阻尼系数Bt/(N·(m·s-1)-1) 100 负载的弹簧刚度Kt/(N·m-1) 5×108 活塞及负载的惯性质量mt/kg 30 -
[1] 付永领,祁晓野,王锴,等.多电飞机的关键技术[C]//中国航空学会控制与应用第十二届学术年会,2006.FU Y L,QI X Y,WANG K,et al.The key technology of more electric aircraft[C]//The 12th Annual Seminar of Technical Committee on Control and Application,2006(in Chinese). [2] 王占林.近代电气液压伺服控制[M].北京:北京航空航天大学出版社,2005:82-97.WANG Z L.Modern electric hydraulic servo control[M].Beijing:Beihang University Press,2005:82-97(in Chinese). [3] 王占林,陈斌.未来飞机液压系统的特性[J].中国工程科学,1999,1(3):5-10. http://www.cnki.com.cn/Article/CJFDTOTAL-GCKX199903001.htmWANG Z L,CHEN B.Characters of future aircraft hydraulic system[J].Engineering Science,1999,1(3):5-10(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-GCKX199903001.htm [4] QI H T,TENG Y T,LIU Z L,et al.Modelling and simulation of a novel dual-redundancy electro-hydrostatic actuator[C]//2015 IEEE International Conference on Fluid Power and Mechatronics.Piscataway,NJ:IEEE Press,2015:270-275. [5] 范殿梁,付永领,郭彦青,等.非相似余度作动系统动态力均衡控制策略[J].北京航空航天大学学报,2015,41(2):234-240. http://bhxb.buaa.edu.cn/CN/abstract/abstract13154.shtmlFAN D L,FU Y L,GUO Y Q,et al.Dynamic force equalization for dissimilar redundant actuator system[J].Journal of Beijing University of Aeronautics and Astronautic,2015,41(2):234-240(in Chinese). http://bhxb.buaa.edu.cn/CN/abstract/abstract13154.shtml [6] 付永领,范殿梁,李祝锋.非相似余度作动系统静态力均衡控制策略[J].北京航空航天大学学报,2014,40(11):1492-1499. http://bhxb.buaa.edu.cn/CN/abstract/abstract13066.shtmlFU Y L,FAN D L,LI Z F.Static force equalization for dissimilar redundant actuator system[J].Journal of Beijing University of Aeronautics and Astronautics,2014,40(11):1492-1499(in Chinese). http://bhxb.buaa.edu.cn/CN/abstract/abstract13066.shtml [7] LI J,FU Y L,GAO B,et al.Force balancing control of multi-electro-hydrostatic actuators for aircraft[C]//Proceedings of the 6th International Conference on Fluid Power Transmission and Control.Hongkong:International Academic Publishers,2005:9-13. [8] 付永领,庞尧,刘和松,等.非相似余度作动系统设计及工作模式分析[J].北京航空航天大学学报,2012,38(4):432-437. http://bhxb.buaa.edu.cn/CN/abstract/abstract12245.shtmlFU Y L,PANG Y,LIU H S,et al.Design and working mode analysis of dissimilar redundant actuator system[J].Journal of Beijing University of Aeronautics and Astronautics,2012,38(4):432-437(in Chinese). http://bhxb.buaa.edu.cn/CN/abstract/abstract12245.shtml [9] 付永领,齐海涛,王利剑,等.混合作动系统的工作模式研究[J].航空学报,2010,31(6):1177-1184. http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201006012.htmFU Y L,QI H T,WANG L J,et al.Research on operating modes in hybrid actuation system[J].Acta Aeronautica et Astronautica Sinica,2010,31(6):1177-1184(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201006012.htm [10] QI H T,FU Y L,QI X Y,et al.Architecture optimization of more electric aircraft actuation system[J].Chinese Journal of Aeronautics,2011,24(4):506-513. doi: 10.1016/S1000-9361(11)60058-7 [11] 齐海涛.多电飞机作动系统体系结构及EHA作动器研究[D].北京:北京航空航天大学,2009:41-59.QI H T.Research on actuation system architecture of more electric aircraft and electro-hydrostatic actuator (EHA)[D].Beijing:Beihang University,2009:41-59(in Chinese). [12] 庞尧.功率电传混合作动系统关键技术研究[D].北京:北京航空航天大学,2012:31-40.PANG Y.Study on crucial technology of power-by-wire hybrid redundant actuation system[D].Beijing:Beihang University,2012:31-40(in Chinese). [13] FU Y L,PANG Y,LIU H S,et al.Force fighting research of dual redundant hydraulic actuation system[C]//2010 IEEE International Conference on Intelligent System Design and Engineering Application.Piscataway,NJ:IEEE Press,2010:762-766. [14] QI H T,MARE J C,FU Y L.Force equalization in hybrid actuation systems[C]//Proceedings of the 7th International Conference on Fluid Power Transmission and Control.Beijing:World Publishing Corporation,2009:342-348. [15] TRUONG D Q,KWAN A K.A study on parallel force/position control applied to hybrid electro-hydrostatic actuators[C]//ICCAS-SICE,2009.Piscataway,NJ:IEEE Press,2009:3009-3014. [16] TRUONG D Q,AHN K K.Self-tuning quantitative feedback theory for parallel force/position control of electro-hydrostatic actuators[J].Proceedings of the Institution of Mechanical Engineers,Part I:Journal of Systems and Control Engineering,2009,223(4):537-556. doi: 10.1243/09596518JSCE700