留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

加速导管和减速导管的性能比较

胡健 王楠 胡洋

胡健, 王楠, 胡洋等 . 加速导管和减速导管的性能比较[J]. 北京航空航天大学学报, 2017, 43(2): 240-252. doi: 10.13700/j.bh.1001-5965.2016.0140
引用本文: 胡健, 王楠, 胡洋等 . 加速导管和减速导管的性能比较[J]. 北京航空航天大学学报, 2017, 43(2): 240-252. doi: 10.13700/j.bh.1001-5965.2016.0140
HU Jian, WANG Nan, HU Yanget al. Performance comparison of accelerating duct and decelerating duct[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(2): 240-252. doi: 10.13700/j.bh.1001-5965.2016.0140(in Chinese)
Citation: HU Jian, WANG Nan, HU Yanget al. Performance comparison of accelerating duct and decelerating duct[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(2): 240-252. doi: 10.13700/j.bh.1001-5965.2016.0140(in Chinese)

加速导管和减速导管的性能比较

doi: 10.13700/j.bh.1001-5965.2016.0140
基金项目: 

国家自然科学基金 11302057

国家自然科学基金 51579052

详细信息
    作者简介:

    王楠, 男, 硕士研究生。主要研究方向:船舶阻力与推进

    胡洋, 男, 硕士研究生。主要研究方向:船舶阻力与推进

    通讯作者:

    胡健, 男, 博士, 副教授。主要研究方向:船舶阻力与推进, E-mail:hujian791018@163.com

  • 中图分类号: U661.1

Performance comparison of accelerating duct and decelerating duct

Funds: 

National Natural Science Foundation of China 11302057

National Natural Science Foundation of China 51579052

More Information
  • 摘要:

    为了研究不同形式导管桨的载荷特点,采用计算流体力学(CFD)技术分析了加速、减速导管的水动力特性及其对螺旋桨水动力性能的影响。计算域被分为包含螺旋桨的柱形域、包含导管的大域2个部分,并采用全结构化网格技术对其进行离散,以便优化网格质量和提高计算精度。用交界面技术保证不同计算域之间流体速度和压力等物理量的连续性。首先分析了JD7704+Ka4-5508导管桨的水动力性能,然后将计算值与试验值进行对比,验证了本文模型和网格技术的合理性。在此基础上,分析了不同翼形剖面拱度和攻角的加速、减速导管的水动力特性,及其对螺旋桨载荷的影响。研究表明,通过改变拱度和攻角2种方式所得到的加速和减速导管具有不同的水动力特性,能极大地优化螺旋桨的工况和载荷特点。

     

  • 图 1  导管桨三维模型

    Figure 1.  Three-dimensional model of ducted propeller

    图 2  旋转域网格示意图

    Figure 2.  Meshing sketch of rotating domain

    图 3  流体域网格划分

    Figure 3.  Meshing of fluid domain

    图 4  导管桨表面网格划分

    Figure 4.  Meshing over surfaces of ducted propeller

    图 5  JD7704+Ka4-5508型导管桨敞水特性的计算值与试验值比较

    Figure 5.  Comparison of numerical and test results of JD7704+Ka4-5508 ducted propeller's open water characteristics

    图 6  拱度为-0.75 t、0和0.75 t时导管翼形剖面示意图

    Figure 6.  Schematic diagram of duct's airfoil sections as f=-0.75 t, f=0, and f=0.75 t

    图 7  叶梢间距随导管拱度的变化

    Figure 7.  Variation of tip clearance with cambers of duct

    图 8  f=-0.75 tf=0和f=0.75 t时导管O-xy截面上流线和轴向速度分布

    Figure 8.  Flow lines and axial velocity distribution on O-xy section as f=-0.75 t, f=0, and f=0.75t

    图 9  f=-0.75 tf=0和f=0.75 t时导管内沿中轴线的轴向速度分布

    Figure 9.  Axial velocity distribution along x-axis as f=0.75 t, f=0, and f=0.75 t

    图 10  f=-0.75 tf=0和f=0.75 t时导管桨O-xy截面上流线和轴向速度分布

    Figure 10.  Flow lines and axial velocity distribution on O-xy section with propeller as f=-0.75 t, f=0, and f=0.75 t

    图 11  导管翼形剖面拱度对螺旋桨水动力性能的影响

    Figure 11.  Influences of cambers of duct's airfoil section onpropeller's hydrodynamic performance

    图 12  f=-0.75 tf=0和f=0.75 t时桨叶的叶背、叶面压力分布

    Figure 12.  Pressure distribution on propeller's back and face as f=-0.75 t, f=0 and f=0.75 t

    图 13  f=-0.75 tf=0和f=0.75 t时导管压力分布

    Figure 13.  Pressure distribution on duct as f=-0.75 t, f=0, and f=0.75 t

    图 14  f=-0.75 tf=0和f=0.75 t时导管桨x/R=0处轴向速度分布

    Figure 14.  Axial velocity distribution of ducted propeller on x/R=0 section as f=-0.75 t, f=0, and f=0.75 t

    图 15  α=-8°、α=0°和α=8°时导管翼形剖面示意图

    Figure 15.  Schematic diagram of duct's airfoil sections as α=-8°, α=0°, and α=8°

    图 16  α=-8°和α=8°时导管O-xy截面上流线和轴向速度分布

    Figure 16.  Flow lines and axial velocity distribution on O-xy section as α=-8° and α=8°

    图 17  α=-8°、α=0°和α=8°时导管内沿中轴线的轴向速度分布

    Figure 17.  Axial velocity distribution along x-axis as α=-8°, α=0°, and α=8°

    图 18  α=-8°和α=8°时导管O-xy截面上流线和轴向速度分布

    Figure 18.  Flow lines and axial velocity distribution on O-xy section as α=-8° and α=8°

    图 19  导管翼型剖面攻角对螺旋桨水动力性能的影响

    Figure 19.  Influences of attack angles of duct's airfoil section on propeller's hydrodynamic performance

    图 20  α=-8°、α=8°时桨叶的叶背、叶面压力分布

    Figure 20.  Pressure distribution on propeller's back and face as α=-8° and α=8°

    图 21  α=-8°和α=8°时导管压力分布

    Figure 21.  Pressure distribution on duct as α=-8° and α=8°

    图 22  攻角为-8°和8°时导管桨x/R=0处轴向速度分布

    Figure 22.  Axial velocity distribution of ducted propeller onx/R=0 section as α=-8° and α=8°

    表  1  NACA0012翼形剖面导管主要参数

    Table  1.   Duct main parameters of NACA0012 airfoil section

    参数 数值/m
    长度 0.1665
    导管外径 0.34
    导管内径 0.30
    叶梢间距 0.026
    下载: 导出CSV

    表  2  Ka4-5508螺旋桨主要参数

    Table  2.   Main parameters of Ka4-5508 propeller

    参数 数值
    直径/m 0.25
    盘面比 0.55
    毂径比 0.2
    螺距比 0.8
    桨叶数 4
    下载: 导出CSV

    表  3  数值模型及工况

    Table  3.   Numerical model and operating condition

    数值方法 计算模型
    求解器 三维单精度基于压力的定常隐式求解器
    湍流模型 SST k-ω
    运动模式 MRF
    水的密度/(kg·m-3) 998.2
    水的动力黏性系数/(kg·(m·s)-1) 0.001003
    螺旋桨转速/(r·min-1) 600
    入口速度/(m·s-1) 1.25
    压力离散格式 Standard
    耦合方式 SIMPLEC
    差分方式 一阶迎风格式
    下载: 导出CSV

    表  4  改变拱度时不同截面轴向平均速度

    Table  4.   Averaged axial velocity on different sections with varied camber

    拱度 入口速度/(m·s-1) 中部速度/(m·s-1) 出口速度/(m·s-1)
    -0.75 t 1.314 474 1.808 438 1.267 485
    0 1.193 269 1.366 831 1.190 093
    0.75 t 1.047 939 0.909 793 1.023 590
    下载: 导出CSV

    表  5  改变攻角时不同截面轴向平均速度

    Table  5.   Averaged axial velocity on different sections with varied attack angle

    攻角/(°) 入口速度/(m·s-1) 中部速度/(m·s-1) 出口速度/(m·s-1)
    -8 0.750 235 1.086 298 1.117 297
    0 1.193 269 1.366 831 1.190 093
    8 1.682 453 1.472 395 1.130 847
    下载: 导出CSV
  • [1] 马乾初, 汤忠谷, 张绍清.船舶附体节能的现状与前景[J].武汉造船, 1992(5):36-40. http://www.cnki.com.cn/Article/CJFDTOTAL-WHZC199205008.htm

    MA Q C, TANG Z G, ZHANG S Q.Present situation and prospect of energy-saving appendages[J].Wuhan Shipbuilding, 1992(5):36-40(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-WHZC199205008.htm
    [2] 王超, 黄胜, 常欣, 等.螺旋桨毂帽鳍水动力性能数值分析[J].船海工程, 2009, 38(6):20-24. http://www.cnki.com.cn/Article/CJFDTOTAL-WHZC200906007.htm

    WANG C, HUANG S, CHANG X, et al.The prediction of hydrodynamic performance of propeller boss cap fins[J].Ship & Ocean Engineering, 2009, 38(6):20-24(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-WHZC200906007.htm
    [3] 马骋, 蔡昊鹏, 钱正芳, 等.螺旋桨与毂帽鳍集成一体化优化设计方法研究[J].中国造船, 2014, 55(3):101-107. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGZC201403011.htm

    MA C, CAI H P, QIAN Z F, et al.Research on integrated optimal design method of propeller and PBCF (propeller boss cap fins)[J].Shipbuilding of China, 2014, 55(3):101-107(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-ZGZC201403011.htm
    [4] 崔承根, 施能继.叶梢带端板螺旋桨的性能研究[J].华中科技大学学报(自然科学版), 1991(3):117-120. http://www.cnki.com.cn/Article/CJFDTOTAL-HZLG199103026.htm

    CUI C G, SHI N J.An investigation on the performance of a screw with endplates at blade tips[J].Journal of Huazhong University of Science and Technology (Natural Science Edition), 1991(3):117-120(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-HZLG199103026.htm
    [5] 罗奕鑫, 崔承根.叶梢带端板螺旋桨的设计方法[J].造船技术, 1997(8):18-22. http://www.cnki.com.cn/Article/CJFDTOTAL-ZCJS199708007.htm

    LUO Y X, CUI C G.Design of a screw with endplates at blade tips[J].Journal of Marine Technology, 1997(8):18-22(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-ZCJS199708007.htm
    [6] 沈海龙.船体与节能附体及螺旋桨的非定常干扰研究[D].哈尔滨:哈尔滨工程大学, 2009.

    SHEN H L.Research on the unsteady interaction between ship hull and energy-saving appendage and propeller[D].Harbin:Harbin Engineering University, 2009(in Chinese).
    [7] 刘奕谦, 谢小龙.VLCC前置导管结构设计与强度分析[J].中国造船, 2013, 54(4):109-119. http://cdmd.cnki.com.cn/Article/CDMD-10248-1015033608.htm

    LIU Y Q, XIE X L.Structure design and stress assessment of wake equalizing duct for VLCC[J].Shipbuilding of China, 2013, 54(4):109-119(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10248-1015033608.htm
    [8] 黄少锋, 黄国富, 杨奕.伴流补偿导管节能增效的CFD评估方法研究[J].中国造船, 2012, 53( http://www.cnki.com.cn/Article/CJFDTOTAL-ZGZC2012S1003.htm

    A01):7-12.HUANG S F, HUANG G F, YANG Y.Numerical prediction for effectiveness of wake equalizing duct[J], Shipbuilding of China, 2012, 53(A01):7-12(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-ZGZC2012S1003.htm
    [9] FEITEN W, BAUER R, LAWITZKY G.Robust obstacle avoidance in unknown and cramped environments[C]//1994 IEEE International Conference on Robotics and Automation.Piscataway, NJ:IEEE Press, 1994:2412-2417.
    [10] 叶元培, 周连第, 郑永敏.导管螺旋桨空泡性能系列试验研究[J].中国造船, 1980(4):27-41. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGZC198004001.htm

    YE Y P, ZHOU L D, ZHENG Y M.Experimental investigations of the performance of ducted propeller series in cavitating conditions[J].Shipbuilding of China, 1980(4):27-41(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-ZGZC198004001.htm
    [11] 叶元培, 沈贻德.双体导管螺旋桨系列试验研究[J].中国造船, 1979(2):3-36. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGZC197902000.htm

    YE Y P, SHEN Y D.A systematic study on the performance characteristics of propeller series with slotted nozzles[J].Shipbuilding of China, 1979(2):3-36(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-ZGZC197902000.htm
    [12] KHATIB M.Sensor-based motion control for mobile robots[D].Toulouse:LAAS-CNRS, 1996.
    [13] 韩宝玉, 熊鹰, 叶金铭.面元法预估导管螺旋桨定常性能的一种简便方法[J].船海工程, 2007, 36(3):42-45. http://www.cnki.com.cn/Article/CJFDTOTAL-WHZC200703014.htm

    HAN B Y, XIONG Y, YE J M.A simple method to predict the steady performance of ducted propeller with surface panel method[J].Ship & Ocean Engineering, 2007, 36(3):42-45(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-WHZC200703014.htm
    [14] 刘小龙, 王国强.导管螺旋桨定常性能预估的基于速度势的面元法[J].船舶力学, 2006, 10(3):26-35. http://www.cnki.com.cn/Article/CJFDTOTAL-CBLX200603003.htm

    LIU X L, WANG G Q.A potential based panel method for prediction of steady performance of ducted propeller[J].Journal of Ship Mechanics, 2006, 10(3):26-35(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-CBLX200603003.htm
    [15] 杨晨俊, 王国强.导管螺旋桨定常性能理论计算[J].上海交通大学学报, 1997, 31(11):36-39. http://www.cnki.com.cn/Article/CJFDTOTAL-SHJT711.006.htm

    YANG C J, WANG G Q.Theoretical prediction of the steady performance of ducted propellers[J].Journal of Shanghai Jiaotong University, 1997, 31(11):36-39(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-SHJT711.006.htm
    [16] KAWAKITA C.A surface panel method for ducted propellers with new wake model based on velocity measurements[J].Journal of the Society of Naval Architects of Japan, 1992(172):187-202. https://www.researchgate.net/publication/271859725_A_Surface_Panel_Method_for_Ducted_Propellers_with_New_Wake_Model_Based_on_Velocity_Measurements
    [17] KINNAS S, HSIN C Y, KEENAN D.A potential based panel method for the unsteady flow around open and ducted propellers[C]//18th ONR, 1990:21-38.
    [18] 解学参, 黄胜, 胡健, 等.导管桨内部流场的数值计算[J].哈尔滨工程大学学报, 2009, 30(1):7-12. http://www.cnki.com.cn/Article/CJFDTOTAL-HEBG200901003.htm

    XIE X C, HUANG S, HU J, et al.Inner flow field calculations for ducted propellers[J].Journal of Harbin Engineering University, 2009, 30(1):7-12(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-HEBG200901003.htm
    [19] 胡健, 黄胜, 马骋, 等.影响导管桨内部流场的几个因素[J].天津大学学报, 2009, 42(4):340-344. http://www.cnki.com.cn/Article/CJFDTOTAL-TJDX200904012.htm

    HU J, HUANG S, MA C, et al.Several influence factors for the inner flow field of ducted propeller[J].Journal of Tianjin University, 2009, 42(4):340-344(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-TJDX200904012.htm
    [20] SANCHEZ-CAJA A, RAUTAHEIMO P, SIIKONEN T.Simulation of incompressible viscous flow around a ducted propeller using a RANS equation solver[C]//Proceedings of the 23rd Symposium on Naval Hydrodynamics.Washington, D.C.:National Academy Press, 2000:527-539.
    [21] PARK W G, JUNG Y R, KIM C K.Numerical flow analysis of single-stage ducted marine propulsor[J].Ocean Engineering, 2005, 32(10):1260-1277. doi: 10.1016/j.oceaneng.2004.10.022
    [22] 崔立新.导管螺旋桨的水动力性能及噪声性能预报[D].哈尔滨:哈尔滨工程大学, 2013.

    CUI L X.Prediction of hydrodynamic performances and noise of ducted propeller[D].Harbin:Harbin Engineering University, 2013(in Chinese).
  • 加载中
图(22) / 表(5)
计量
  • 文章访问数:  1117
  • HTML全文浏览量:  197
  • PDF下载量:  690
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-02-25
  • 录用日期:  2016-06-13
  • 网络出版日期:  2017-02-20

目录

    /

    返回文章
    返回
    常见问答