-
摘要:
为研究等离子体对多组分燃气在发动机补燃室中的助燃特性,建立了多组分燃气供给系统以及扩散燃烧实验模型。测量了等离子体炬的发射光谱,得到了等离子体炬的主要激发态粒子;拍摄了多组分燃气在补燃室的扩散火焰照片,得到了等离子体对多组分燃气的扩散火焰形貌的影响;测量了补燃室4个不同截面上的静压和总压,分析了等离子体对多组分燃气在发动机中燃烧效率的影响。实验结果表明:等离子体炬主要产生氮气和氧气的激发态粒子;加入等离子体后,喷出冲压尾喷管的火焰长度得到进一步缩短,说明等离子体可以在更短的燃烧室长度内使得多组分燃气得到更加充分的燃烧;加入等离子体时,补燃室不同截面的静压和总压都会出现突升台阶,说明等离子体可以加快燃气的化学反应速率,提高多组分燃气在发动机中的燃烧效率,且等离子体功率越高,燃气燃烧效率的增长率越高。
Abstract:In order to study the influence of plasma on the combustion characteristic of multicomponent fuel gas in the ramjet chamber, a multicomponent fuel gas supply system and a diffusion combustion experimental model based on the ramjet, which can exclude the mixing effect of intake air on the fuel gas, are designed and built. The main active particles produced by discharge plasma torch are analyzed with emission spectrometry; the flame combustion photos of multicomponent fuel gas is taken to analyze the influence of plasma on the flame shape; the total pressure and static pressure on four different cross sections of the afterburning chamber are measured to analyze the combustion efficiency of fuel gas under the influence of plasma. The results show that the main excited particles of N2 and O2 are generated with excitation of plasma; under the active particles of plasma, and the flame length in the scramjet nozzle becomes shorter, which means that multicomponent fuel gas can burn more completely with plasma; the abrupt increase in the total pressure and static pressure appears when plasma is working, which shows that the combustion efficiency of multicomponent fuel gas in the ramjet increases with plasma too, and the combustion efficiency increases with the growth of discharge plasma power.
-
Key words:
- plasma torches /
- afterburning chamber /
- diffusion flame /
- combustion efficiency /
- spectrum analysis /
- methane
-
表 1 一次燃气的主要气相组分
Table 1. Major gas phase components of primary combustion products
组分 H2 N2 CH4 CO 其他 体积比/% 54 16 22 5 3 表 2 实验结果分析
Table 2. Experimental result analysis
g/(kg·s-1) air/(kg·s-1) piasma/(kg·s-1) 空燃比 总压/MPa Ctheo*/(m·s-1) Cexp*/(m·s-1) ηC*/% 加入 断开 加入 断开 加入 断开 0.01 0.216 0.002 21.8 0.158 0.139 996.1 709.1 623.8 71.19 62.62 -
[1] FRY R S.A century of ramjet propulsion technology evolution[J].Journal of Propulsion and Power, 2004, 20(1):27-58. doi: 10.2514/1.9178 [2] STARIKOVSKII A Y.Superfast homogeneous plasma ignition of hydrogen and air-fuel supersonic flows by high-voltage ionization wave[R].Dolgoprudny:Moscow Institute of Physics and Technology, 1999. [3] STARIKOVSKAIA S M.Kinetics in gas mixtures for problem of plasma assisted combustion[R].Dolgoprudny:Moscow Institute of Physics And Technology, 2010. [4] INOMATA T, OKAZAKI S, MORIWAKI T, et al.The application of silent electric discharges to propagating flames[J].Combustion and Flame, 1983, 50(3):361-363. http://www.sciencedirect.com/science/article/pii/0010218083900767 [5] VINCENT-RANDONNIER A, LARIGALDIE S, MAGRE P, et al.Experimental study of a methane diffusion flame under dielectric barrier discharge assistance[J].IEEE Transactions on Plasmas Science, 2007, 35(2):223-232. doi: 10.1109/TPS.2007.893249 [6] CARTER C, LEONOV S B, YARANTSEV D.Experiments on electrically controlled flameholding on a plane wall in a supersonic air flow[J].Journal of Propulsion and Power, 2009, 25(2):289-294. doi: 10.2514/1.38002 [7] LEONOV S B, KOCHETOV I V, NAPARTOVICH A P, et al.Plasma-induced ethylene ignition and flameholding in confined supersonic air flow at low temperatures[J].IEEE Transactions on Plasma Science, 2011, 39(2):781-787. doi: 10.1109/TPS.2010.2091512 [8] STARIKOVSKAIA S M.Kinetics in gas mixtures for problem of plasma assisted combustion[R].Dolgoprudny:Moscow Institute of Physics and Technology, 2010. [9] DO H, CAPPELLI M A, MUNGAL M G.Plasma assisted cavity flame ignition in supersonic flows[J].Combustion and Flame, 2010, 157(9):1783-1794. doi: 10.1016/j.combustflame.2010.03.009 [10] DO H, IM S, CAPPELLI M, et al.Plasma assisted flame ignition of supersonic flows over a flat wall[J].Combustion and Flame, 2010, 157(12):2298-2305. doi: 10.1016/j.combustflame.2010.07.006 [11] BAK M S, DO H, MUNGAL M G, et al.Plasma-assisted stabilization of laminar premixed methane/air flames around the lean flammability limit[J].Combustion and Flame, 2012, 159(10):3128-3237. doi: 10.1016/j.combustflame.2012.03.023 [12] SUN W, UDDI M, OMBRELLO T, et al.Effects of nonequilibrium plasma discharge on counterflow diffusion flame extinction[J].Proceedings of the Combustion Institute, 2011, 33(2):3211-3218. doi: 10.1016/j.proci.2010.06.148 [13] SUN W, WON S H, OMBRELLO T, et al.Direct ignition and S-curve transition by in situ nanosecond pulsed discharge in methane/oxygen/helium counterflow flame[J].Proceedings of the Combustion Institute, 2013, 34(1):847-855. doi: 10.1016/j.proci.2012.06.104 [14] MATSUBARA Y, TAKITA K, MASUYA G.Combustion enhancement in a supersonic flow by simultaneous operation of DBD and plasma jet[J].Proceeding of the Combustion Institute, 2013, 34(2):3287-3294. doi: 10.1016/j.proci.2012.07.001 [15] ALEKSANDROV N L, KINDYSHEVA S V, KOCHETOV I V.Kinetics of low-temperature plasmas for plasma-assisted combustion and aerodynamics[J].Plasma Science and Technology, 2014, 23(1):015017. doi: 10.1088/0963-0252/23/1/015017 [16] STARIKOVSKIY A, ALEKSANDROV N.Plasma-assisted ignition and combustion[J].Progress in Energy and Combustion Science, 2013, 39(1):61-110. doi: 10.1016/j.pecs.2012.05.003 [17] JU Y G, SUN W T.Plasma assisted combustion:Dynamics and chemistry[J].Progress in Energy and Combustion Science, 2015, 48(1):21-83. https://www.researchgate.net/publication/270650489_Plasma_assisted_combustion_Dynamics_and_chemistry?_sg=uMG5kh-pQpTS55J5PZLo0oyhNIIBd9W0bRQGHhmNk0vj_WsNUMq_M2euSXYJxTL0q5tI6kS2uUjrrFgskmiKcQ [18] 吴云, 李应红.等离子体流动控制与点火助燃研究进展[J].高电压技术, 2014, 40(7):2024-2038. http://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ201407016.htmWU Y, LI Y H.Progress in research of plasma-assisted flow control, ignition and combustion[J].High Voltage Engineering, 2014, 40(7):2024-2038(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ201407016.htm [19] 宋振兴, 何立明, 张建邦, 等.超音速等离子体点火过程的三维数值模拟[J].强激光与粒子束, 2012, 24(11):2746-2750. doi: 10.3788/HPLPBSONG Z X, HE L M, ZHANG J B, et al.3D numerical simulation of supersonic plasma ignition process[J].High Power Laser and Particle Beams, 2012, 24(11):2746-2750(in Chinese). doi: 10.3788/HPLPB [20] 韦宝禧, 欧东, 闫明磊, 等.超燃燃烧室等离子体点火和火焰稳定性能[J].北京航空航天大学学报, 2012, 38(12):1572-1576. http://bhxb.buaa.edu.cn/CN/abstract/abstract12467.shtmlWEI B X, OU D, YAN M L, et al.Ignition and flame holding ability of plasma torch igniter in a supersonic flow[J].Journal of Beijing University of Aeronautics and Astronautics, 2012, 38(12):1572-1576(in Chinese). http://bhxb.buaa.edu.cn/CN/abstract/abstract12467.shtml [21] 于锦禄, 何立明, 丁未, 等.瞬态等离子体点火和火花塞点火起爆过程的对比研究[J].推进技术, 2013, 34(11):1575-1579. http://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201311018.htmYU J L, HE L M, DING W, et al.Comparative investigation on detonation initiation process of transient plasma ignition and spark ignition[J].Journal of Propulsion Technology, 2013, 34(11):1575-1579(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201311018.htm [22] 宋慧敏, 吴韦韦, 崔巍, 等.射频放电等离子体气动激励特性的实验研究[J].高电压技术, 2014, 40(7):2044-2048. http://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ201407018.htmSONG H M, WU W W, CUI W, et al.Experimental investigation on the characteristics of RF discharge plasma aerodynamic actuation[J].High Voltage Engineering, 2014, 40(7):2044-2048(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ201407018.htm [23] 赵兵兵, 何立明, 沈英, 等.直流电弧等离子体点火器化学效应研究[J].光谱学与光谱分析, 2013, 33(5):1171-1174. http://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201305006.htmZHAO B B, HE L M, SHEN Y, et al.Experimental investigation of the chemical effect of direct current arc plasma igniter[J].Spectroscopy and Spectral Analysis, 2013, 33(5):1171-1174(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201305006.htm [24] 何立明, 陈高成, 赵兵兵, 等.空气等离子体射流点火器的光谱特性实验研究[J].高电压技术, 2015, 41(9):2874-2879. http://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ201509009.htmHE L M, CHEN G C, ZHAO B B, et al.Experimental investigation on spectral characteristics of air plasma jet igniter[J].High Voltage Engineering, 2015, 41(9):2874-2879(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ201509009.htm