留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种基于支持向量回归的混合建模方法

孙泽斌 赵琦 赵洪博 冯文全 张文峰 杨天社

孙泽斌, 赵琦, 赵洪博, 等 . 一种基于支持向量回归的混合建模方法[J]. 北京航空航天大学学报, 2017, 43(2): 352-359. doi: 10.13700/j.bh.1001-5965.2016.0319
引用本文: 孙泽斌, 赵琦, 赵洪博, 等 . 一种基于支持向量回归的混合建模方法[J]. 北京航空航天大学学报, 2017, 43(2): 352-359. doi: 10.13700/j.bh.1001-5965.2016.0319
SUN Zebin, ZHAO Qi, ZHAO Hongbo, et al. An SVR based hybrid modeling method[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(2): 352-359. doi: 10.13700/j.bh.1001-5965.2016.0319(in Chinese)
Citation: SUN Zebin, ZHAO Qi, ZHAO Hongbo, et al. An SVR based hybrid modeling method[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(2): 352-359. doi: 10.13700/j.bh.1001-5965.2016.0319(in Chinese)

一种基于支持向量回归的混合建模方法

doi: 10.13700/j.bh.1001-5965.2016.0319
基金项目: 

国家“973”计划 

详细信息
    作者简介:

    孙泽斌, 男, 博士研究生。主要研究方向:故障诊断、故障预测、图像处理

    赵琦, 女, 博士, 副教授。主要研究方向:故障诊断、通信信号处理、认知无线电

    冯文全, 男, 博士, 教授, 博士生导师。主要研究方向:故障诊断、通信信号处理、卫星导航信号处理

    张文峰, 男, 博士研究生。主要研究方向:故障诊断、故障预测

    通讯作者:

    赵洪博, 男, 博士, 讲师。主要研究方向:故障诊断、卫星导航信号处理, E-mail:bhzhb@buaa.edu.cn

  • 中图分类号: TB114.3

An SVR based hybrid modeling method

Funds: 

National Basic Research Program of China 

More Information
  • 摘要:

    近年来,随着计算能力的不断提高,数据驱动的建模方法受到了广泛的关注,对单模式系统进行定量分析的建模方法获得了诸多研究。然而,实际应用中大多数系统为多模式系统,不但各个模式有着不同的连续行为,连续状态还会在模式之间进行切换。针对这一情形,本文提出了经验概率混合自动机模型,并提出了针对该模型的基于支持向量回归(SVR)的多模式定性定量混合建模方法。该方法使用小波技术识别模式切换点,并在各个模式下单独建立支持向量模型,最后使用D-Markov机整合模型。经实例验证,该方法与传统支持向量回归模型的稳定性接近,但精确程度显著提高。

     

  • 图 1  慢时间尺度与快时间尺度

    Figure 1.  Slow time scale and fast time scale

    图 2  混合建模框图

    Figure 2.  Block diagram of hybrid modeling

    图 3  混合系统行为

    Figure 3.  Behavior of hybrid system

    图 4  模式切换点识别

    Figure 4.  Recognition of mode switching points

    图 5  EPHA模型与SVR模型系统行为曲线

    Figure 5.  System behavior curves of EPHA model and SVR model

    表  1  SVR与EPHA均方误差

    Table  1.   Mean square error of SVR and EPHA

    序号 均方误差
    SVR EPHA
    1 0.089 6 0.071 6
    2 0.094 5 0.067 9
    3 0.094 4 0.072 8
    4 0.091 6 0.073 3
    5 0.093 5 0.071 8
    6 0.089 6 0.072 2
    7 0.091 2 0.070 1
    8 0.094 2 0.071 6
    9 0.093 5 0.068 7
    10 0.094 5 0.072 2
    方差 3.95×10-6 3.11×10-6
    均值 0.092 7 0.071 2
    下载: 导出CSV
  • [1] SOLOMATINE D P, OSTFELD A.Data-driven modelling:Some past experiences and new approaches[J].Journal of Hydroinformatics, 2008, 10(1):3-22. doi: 10.2166/hydro.2008.015
    [2] 陈华舟, 宋奇庆, 石凯, 等.多维标度线性回归技术应用于人体血清临床指标的FTIR光谱定量分析[J].光谱学与光谱分析, 2015, 35(4):914-918.

    CHEN H Z, SONG Q Q, SHI K, et al.Multidimensional scaling linear regression applied to FTIR spectral quantitative analysis of clinical parameters of human blood serum[J].Spectroscopy and Spectral Analysis, 2015, 35(4):914-918(in Chinese).
    [3] 谭鑫, 潘景昌, 王杰, 等.基于线指数线性回归的恒星光谱大气物理参数测量[J].光谱学与光谱分析, 2013, 33(5):1397-1400.

    TAN X, PAN J C, WANG J, et al.Stellar spectrum parameter measurement based on line index by linear regression[J].Spectroscopy and Spectral Analysis, 2013, 33(5):1397-1400(in Chinese).
    [4] 谷艳红, 李颖, 田野, 等.基于LIBS技术的钢铁合金中元素多变量定量分析方法研究[J].光谱学与光谱分析, 2014, 34(8):2244-2249.

    GU Y H, LI Y, TIAN Y, et al.Study on the multivariate quantitative analysis method for steel alloy elements using LIBS[J].Spectroscopy and Spectral Analysis, 2014, 34(8):2244-2249(in Chinese).
    [5] CORTES C, VAPNIK V. Support-vector networks[J]. Machine Learning, 1995, 20(3):273-297. http://onlinelibrary.wiley.com/resolve/reference/XREF?id=10.1007/BF00994018
    [6] 李元.时间序列中变点的小波分析及非线性小波估计[M].北京:中国统计出版社, 2002:11-41.

    LI Y.Wavelet analysis for change points and nonlinear wavelet estimates in time series[M].Beijing:China Statistics Press, 2002:11-41(in Chinese).
    [7] GUPTA S, RAY A, SARKAR S, et al.Fault detection and isolation in aircraft gas turbine engines.Part 1:Underlying concept[J].Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2008, 222(3):307-318. doi: 10.1243/09544100JAERO311
    [8] SARKAR S, YASAR M, GUPTA S, et al.Fault detection and isolation in aircraft gas turbine engines.Part 2:Validation on a simulation test bed[J].Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2008, 222(3):319-330. doi: 10.1243/09544100JAERO312
    [9] CHAKRABORTY S, SARKAR S, RAY A.Symbolic identification for fault detection in aircraft gas turbine engines[J].Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2012, 226(4):422-436. doi: 10.1177/0954410011409980
    [10] CHAKRABORTY S, SARKAR S, RAY A, et al.Symbolic identification for anomaly detection in aircraft gas turbine engines[C]//Proceedings of the 2010 American Control Conference.Piscataway, NJ:IEEE Press, 2010:5954-5959.
    [11] SARKAR S, MUKHERJEE K, RAY A.Symbolic dynamic analysis of transient time series for fault detection in gas turbine engines[J].Journal of Dynamic Systems Measurement and Control-Transactions of the ASME, 2012, 135(1):359-370. https://www.researchgate.net/publication/275377792_Symbolic_Dynamic_Analysis_of_Transient_Time_Series_for_Fault_Detection_in_Gas_Turbine_Engines
    [12] MOSTERMAN P J.Hybrid dynamic systems:A hybrid bond graph modeling paradigm and its application in diagnosis[D].Nashville, Tennessee:Vanderbilt University, 1997:13-31.
    [13] BREGON A, ALONSO C, BISWAS G, et al.Fault diagnosis in hybrid systems using possible conflicts[C]//8th IFAC Symposium on Fault Detection, Supervision and Safety of Technical Processes.Laxenburg:IFAC Secretariat, 2012, 8(1):132-137.
    [14] HAHN E M, HERMANNS H.Rewarding probabilistic hybrid automata[C]//Proceedings of the 16th International Conference on Hybrid Systems:Computation and Control.New York:ACM, 2013:313-322.
    [15] HOFBAUR M W, WILLIAMS B C.Mode estimation of probabilistic hybrid systems[C]//International Workshop on Hybrid Systems:Computation and Control.Berlin:Springer-Verlag, 2002:253-266.
    [16] ZHOU G, BISWAS G, FENG W.A comprehensive diagnosis of hybrid systems for discrete and parametric faults using hybrid I/O automata[J].IFAC-PapersOnLine, 2015, 48(21):143-149. doi: 10.1016/j.ifacol.2015.09.518
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  734
  • HTML全文浏览量:  40
  • PDF下载量:  611
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-04-19
  • 录用日期:  2016-04-29
  • 网络出版日期:  2017-02-20

目录

    /

    返回文章
    返回
    常见问答