-
摘要:
近年来,随着计算能力的不断提高,数据驱动的建模方法受到了广泛的关注,对单模式系统进行定量分析的建模方法获得了诸多研究。然而,实际应用中大多数系统为多模式系统,不但各个模式有着不同的连续行为,连续状态还会在模式之间进行切换。针对这一情形,本文提出了经验概率混合自动机模型,并提出了针对该模型的基于支持向量回归(SVR)的多模式定性定量混合建模方法。该方法使用小波技术识别模式切换点,并在各个模式下单独建立支持向量模型,最后使用
D -Markov机整合模型。经实例验证,该方法与传统支持向量回归模型的稳定性接近,但精确程度显著提高。-
关键词:
- 混合建模 /
- 支持向量回归(SVR) /
- D-Markov机 /
- 小波 /
- 数据驱动的建模
Abstract:As computing power increases in recent years, data-driven modeling method receives much attention. Modeling methods to analyze quantitative behavior of systems with single mode have been researched much. However, most systems have multiple modes which own different continuous behavior and are influenced by continuous state when switching. This paper proposes the empirical probabilistic hybrid automata model and the qualitative and quantitative hybrid modeling method based on support vector regression (SVR).First, switching points between modes are recognized via wavelet and then the SVR sub-models are constructed for each mode. Finally, all sub-models are integrated within
D -Markov machine. The example verification results demonstrate that the proposed method is as stable as traditional SVR model, and much more accurate than it.-
Key words:
- hybrid modeling /
- support vector regression (SVR) /
- D-Markov machine /
- wavelet /
- data-driven modeling
-
表 1 SVR与EPHA均方误差
Table 1. Mean square error of SVR and EPHA
序号 均方误差 SVR EPHA 1 0.089 6 0.071 6 2 0.094 5 0.067 9 3 0.094 4 0.072 8 4 0.091 6 0.073 3 5 0.093 5 0.071 8 6 0.089 6 0.072 2 7 0.091 2 0.070 1 8 0.094 2 0.071 6 9 0.093 5 0.068 7 10 0.094 5 0.072 2 方差 3.95×10-6 3.11×10-6 均值 0.092 7 0.071 2 -
[1] SOLOMATINE D P, OSTFELD A.Data-driven modelling:Some past experiences and new approaches[J].Journal of Hydroinformatics, 2008, 10(1):3-22. doi: 10.2166/hydro.2008.015 [2] 陈华舟, 宋奇庆, 石凯, 等.多维标度线性回归技术应用于人体血清临床指标的FTIR光谱定量分析[J].光谱学与光谱分析, 2015, 35(4):914-918.CHEN H Z, SONG Q Q, SHI K, et al.Multidimensional scaling linear regression applied to FTIR spectral quantitative analysis of clinical parameters of human blood serum[J].Spectroscopy and Spectral Analysis, 2015, 35(4):914-918(in Chinese). [3] 谭鑫, 潘景昌, 王杰, 等.基于线指数线性回归的恒星光谱大气物理参数测量[J].光谱学与光谱分析, 2013, 33(5):1397-1400.TAN X, PAN J C, WANG J, et al.Stellar spectrum parameter measurement based on line index by linear regression[J].Spectroscopy and Spectral Analysis, 2013, 33(5):1397-1400(in Chinese). [4] 谷艳红, 李颖, 田野, 等.基于LIBS技术的钢铁合金中元素多变量定量分析方法研究[J].光谱学与光谱分析, 2014, 34(8):2244-2249.GU Y H, LI Y, TIAN Y, et al.Study on the multivariate quantitative analysis method for steel alloy elements using LIBS[J].Spectroscopy and Spectral Analysis, 2014, 34(8):2244-2249(in Chinese). [5] CORTES C, VAPNIK V. Support-vector networks[J]. Machine Learning, 1995, 20(3):273-297. http://onlinelibrary.wiley.com/resolve/reference/XREF?id=10.1007/BF00994018 [6] 李元.时间序列中变点的小波分析及非线性小波估计[M].北京:中国统计出版社, 2002:11-41.LI Y.Wavelet analysis for change points and nonlinear wavelet estimates in time series[M].Beijing:China Statistics Press, 2002:11-41(in Chinese). [7] GUPTA S, RAY A, SARKAR S, et al.Fault detection and isolation in aircraft gas turbine engines.Part 1:Underlying concept[J].Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2008, 222(3):307-318. doi: 10.1243/09544100JAERO311 [8] SARKAR S, YASAR M, GUPTA S, et al.Fault detection and isolation in aircraft gas turbine engines.Part 2:Validation on a simulation test bed[J].Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2008, 222(3):319-330. doi: 10.1243/09544100JAERO312 [9] CHAKRABORTY S, SARKAR S, RAY A.Symbolic identification for fault detection in aircraft gas turbine engines[J].Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2012, 226(4):422-436. doi: 10.1177/0954410011409980 [10] CHAKRABORTY S, SARKAR S, RAY A, et al.Symbolic identification for anomaly detection in aircraft gas turbine engines[C]//Proceedings of the 2010 American Control Conference.Piscataway, NJ:IEEE Press, 2010:5954-5959. [11] SARKAR S, MUKHERJEE K, RAY A.Symbolic dynamic analysis of transient time series for fault detection in gas turbine engines[J].Journal of Dynamic Systems Measurement and Control-Transactions of the ASME, 2012, 135(1):359-370. https://www.researchgate.net/publication/275377792_Symbolic_Dynamic_Analysis_of_Transient_Time_Series_for_Fault_Detection_in_Gas_Turbine_Engines [12] MOSTERMAN P J.Hybrid dynamic systems:A hybrid bond graph modeling paradigm and its application in diagnosis[D].Nashville, Tennessee:Vanderbilt University, 1997:13-31. [13] BREGON A, ALONSO C, BISWAS G, et al.Fault diagnosis in hybrid systems using possible conflicts[C]//8th IFAC Symposium on Fault Detection, Supervision and Safety of Technical Processes.Laxenburg:IFAC Secretariat, 2012, 8(1):132-137. [14] HAHN E M, HERMANNS H.Rewarding probabilistic hybrid automata[C]//Proceedings of the 16th International Conference on Hybrid Systems:Computation and Control.New York:ACM, 2013:313-322. [15] HOFBAUR M W, WILLIAMS B C.Mode estimation of probabilistic hybrid systems[C]//International Workshop on Hybrid Systems:Computation and Control.Berlin:Springer-Verlag, 2002:253-266. [16] ZHOU G, BISWAS G, FENG W.A comprehensive diagnosis of hybrid systems for discrete and parametric faults using hybrid I/O automata[J].IFAC-PapersOnLine, 2015, 48(21):143-149. doi: 10.1016/j.ifacol.2015.09.518