-
摘要:
针对拦截空中飞行目标需要满足零脱靶量和攻击角约束提高导弹制导性能等问题,首先,利用考虑噪声干扰的扩张状态观测器对目标加速度进行估计,其次,改进一种非奇异终端滑模面,将自动驾驶仪视为理想环节,然后,基于终端滑模控制理论和有限时间收敛理论推导一种滑模制导律,最后,考虑自动驾驶仪二阶动态特性,将得到的滑模制导律结合动态面控制法提出一种新型制导律。分别以不同的攻击角对机动飞行和匀速飞行的目标进行拦截,大量仿真表明,所提制导律具有良好的制导性能,能够保证导弹在零脱靶量击中目标的同时达到期望攻击角。
Abstract:Interception of air targets requires zero miss-distance and impact angle constraint to improve the missile guidance performance. First, the acceleration of the target was estimated by extended disturbance observer which also considered the noise interference. Second, a nonsingular terminal sliding mode surface was improved, which considered autopilot ideally. Third, a sliding-mode guidance law was designed based on the terminal sliding mode control theory and the theory of finite time convergence. Finally, considering the second-order dynamic characteristics of autopilot, the novel guidance law was developed combining both sliding-mode guidance law and dynamic surface control method. In simulation experiments, both maneuvering targets and constant velocity targets were intercepted with different impact angle. A large number of simulation results demonstrate that the proposed guidance law canguarantee that the missile hits the target and at the same time achieves a desired angle of impact, which performs well.
-
表 1 不同视线角拦截机动目标仿真实验结果
Table 1. Simulation experimental results of maneuvering target interception at different angles of LOS
qd/(°) 制导律 制导
时间/s脱靶量/
m视线角
偏差/(°)30 BPNG 12.12 2.298 3 2.3 DSCG 11.69 0.247 8 0.5 SMG 11.68 1.256 4 1.1 VSG 11.67 1.426 8 1.3 60 BPNG 12.08 2.278 5 1.8 DSCG 11.62 0.239 8 0.3 SMG 11.62 1.087 2 0.9 VSG 11.61 1.413 9 1.2 75 BPNG 12.16 2.301 2 2.5 DSCG 11.67 0.257 6 0.4 SMG 11.66 1.156 8 1.3 VSG 11.64 1.507 3 1.4 表 2 不同视线角拦截匀速目标仿真实验结果
Table 2. Simulation experimental results of uniform-velocity target interception at different angles of LOS
qd/(°) 制导律 制导
时间/s脱靶量/
m视线角
偏差/(°)30 BPNG 11.63 3.568 5 2.2 DSCG 11.54 0.354 2 0.3 SMG 11.49 1.532 7 1.3 VSG 11.52 1.453 6 1.3 60 BPNG 11.55 3.550 7 2.1 DSCG 11.51 0.336 9 0.2 SMG 11.48 1.513 8 1.2 VSG 11.48 1.483 2 1.1 75 BPNG 11.58 3.760 4 2.4 DSCG 11.52 0.326 9 0.3 SMG 11.50 1.502 3 1.2 VSG 11.49 1.496 3 1.3 -
[1] 吴洪波.防空导弹导引方法研究综述.上海航天, 2013, 30(3):22-26. http://d.wanfangdata.com.cn/Periodical/shht201303006WU H B.A survey of guidance law in air defense weapons.Aerospace Shanghai, 2013, 30(3):22-26(in Chinese). http://d.wanfangdata.com.cn/Periodical/shht201303006 [2] 王晓芳, 郑艺裕, 林海.基于扰动观测器的终端角约束滑模导引律.系统工程与电子技术, 2014, 36(1):111-116. doi: 10.3969/j.issn.1001-506X.2014.01.18WANG X F, ZHENG Y Y, LIN H. Sliding mode guidance law with impact angle constraint based on disturbance observer.Systems Engineering and Electronics, 2014, 36(1):111-116(in Chinese). doi: 10.3969/j.issn.1001-506X.2014.01.18 [3] 张皎, 杨旭, 刘源翔.基于扩张干扰观测器的带攻击角约束制导律.北京航空航天大学学报, 2015, 41(12):2256-2268. http://bhxb.buaa.edu.cn/CN/abstract/abstract13639.shtmlZHANG J, YANG X, LIU Y X.Guidance law with impact angle constraints based on extended disturbance observer.Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(12):2256-2268(in Chinese). http://bhxb.buaa.edu.cn/CN/abstract/abstract13639.shtml [4] 周慧波, 宋申民, 刘海坤.具有攻击角约束的非奇异终端滑模导引律设计.中国惯性技术学报, 2014, 22(5):606-611. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGXJ201405010.htmZHOU H B, SONG S M, LIU H K.Nonsingular terminal sliding mode guidance law with impact angle constraint.Journal of Chinese Inertial Technology, 2014, 22(5):606-611(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-ZGXJ201405010.htm [5] 刁兆师, 单家元.带末端攻击角约束连续有限时间稳定制导律.宇航学报, 2014, 35(10):1141-1149. doi: 10.3873/j.issn.1000-1328.2014.10.006DIAO Z S, SHAN J Y.Continuous finite-time stabilization guidance law for terminal impact angle constrainted flight trajectory.Journal of Astronautics, 2014, 35(10):1141-1149(in Chinese). doi: 10.3873/j.issn.1000-1328.2014.10.006 [6] 宋俊红, 宋申明.考虑输入受限和自动驾驶仪延迟的自适应滑模制导律.中国惯性技术学报, 2015, 23(3):339-344. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGXJ201503011.htmSONG J H, SONG S M.Adaptive sliding mode guidance law with input constraints and autopilot lag.Journal of Chinese Inertial Technology, 2015, 23(3):339-344(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-ZGXJ201503011.htm [7] 孙胜, 张华明, 周荻.考虑自动驾驶仪动特性的终端角度约束滑模导引律.宇航学报, 2013, 34(1):69-77. http://www.cnki.com.cn/Article/CJFDTOTAL-YHXB201301009.htmSUN S, ZHANG H M, ZHOU D.Sliding mode guidance law with autopilot lag for terminal angle constrained trajectories.Journal of Astronautics, 2013, 34(1):69-77(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-YHXB201301009.htm [8] ZHOU D, QU P P, SUN S.A guidance law with terminal impact angle constraint accounting for missile autopilot.Journal of Dynamic Systems, Measurement, and Control, 2013, 135(5):051009. doi: 10.1115/1.4024202 [9] 熊少锋, 王卫红, 刘晓东, 等.考虑导弹自动驾驶仪动态特性的带攻击角度约束制导律.控制与决策, 2015, 30(4):585-592. http://d.wanfangdata.com.cn/Periodical/kzyjc201504002XIONG S F, WANG W H, LIU X D, et al. Impact angle guidancelaw considering missile's dynamics of autopilot[J]. Control and Decision, 2015, 30(4):585-592(in Chinese). http://d.wanfangdata.com.cn/Periodical/kzyjc201504002 [10] SUN S, ZHOU D, HOU W.A guidance law with finite-time convergence accounting for autopilot lag.Aerospace Science and Technology, 2013, 25(1):132-137. doi: 10.1016/j.ast.2011.12.016 [11] LI G, JI H.A guidance law with finite time convergence considering autopilot dynamics and uncertainties.Journal of Control, Automation and Systems, 2014, 12(5):1011-1017. doi: 10.1007/s12555-013-0432-y [12] 曲萍萍, 周荻.考虑导弹自动驾驶仪二阶动态特性的三维导引律.航空学报, 2011, 32(11):2096-2105.QU P P, ZHOU D.Three dimensional guidance law accounting for second-order dynamics of missile autopilot[J].Acta Aeronautica et Astronautica Sinica, 2011, 32(11):2096-2105(in Chinese). [13] 曲萍萍, 周荻.考虑导弹自动驾驶仪二阶动态特性的导引律.系统工程与电子技术, 2011, 33(10):2263-2267. doi: 10.3969/j.issn.1001-506X.2011.10.24QU P P, ZHOU D.Guidance law incorporating second-order dynamics of missile autopilots.System Engineering and Electronics, 2011, 33(10):2263-2267(in Chinese). doi: 10.3969/j.issn.1001-506X.2011.10.24 [14] 张尧, 郭杰, 唐胜景, 等.机动目标拦截含攻击角约束的新型滑模制导律.兵工学报, 2015, 36(8):1143-1157. http://www.cnki.com.cn/Article/CJFDTOTAL-BIGO201508011.htmZHANG Y, GUO J, TANG S J, et al.A novel sliding mode guidance law with impact angle constrain for maneuvering target interception.Acta Armamentarii, 2015, 36(8):1143-1157(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-BIGO201508011.htm [15] 刁兆师, 单家元.考虑自动驾驶仪动态特性的含攻击角约束的反演递推制导律.宇航学报, 2014, 35(7):818-826. http://www.cnki.com.cn/Article/CJFDTOTAL-YHXB201407012.htmDIAO Z S, SHAN J Y. Back-stepping guidance law with autopilot lag for attack angle constrained trajectories.Journal of Astronautics, 2014, 35(7):818-826(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-YHXB201407012.htm [16] 穆朝絮, 余星火, 孙长银.非奇异终端滑模控制系统相轨迹和暂态分析.自动化学报, 2013, 39(6):902-908. http://www.cnki.com.cn/Article/CJFDTOTAL-MOTO201306025.htmMU C X, YU X H, SUN C Y.Phase trajectory and transient analysis for nonsingular terminal sliding mode control systems.Acta Automatica Sinica, 2013, 39(6):902-908(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-MOTO201306025.htm [17] YU J, XU Q, ZHI Y.A TSM control scheme of integrated guidance/autopilot design for UAV//3rd International Conference on Computer Research and Development.Piscataway, NJ:IEEE Press, 2011:431-435. [18] ZHANG Y X, SUN M W, CHEN Z Q.Finite-time convergent guidance law with impact angle constraint based on sliding-modecontrol.Nonlinear Dynamic, 2012, 7(3):619-625. doi: 10.1007%2Fs11071-012-0482-3 [19] SHASHI R K, SACHIT R, DEBASISH G.Sliding-mode guidance and control for all-aspect interceptors with terminal angle constraints.Journal of Guidance, Control, and Dynamics, 2012, 35(4):1230-1246. doi: 10.2514/1.55242 [20] RAO S, DEBASISH G.Terminal impact angle constrained guidance laws using variable structure systems theory.IEEE Transactions on Control Systems Technology, 2013, 21(6):2350-2359. doi: 10.1109/TCST.2013.2276476 [21] KUMAR S R, RAO S, GHOSE D.Nonsingular terminal sliding mode guidance with impact angle constraints.Journal of Guidance, Control and Dynamics, 2014, 37(4):1114-1130. doi: 10.2514/1.62737 [22] SWAROOP D, HEDRICK J K, YIP P P, et al.Dynamic surface control for a class of nonlinear systems.IEEE Transactions on Automatic Control, 2000, 45(10):1893-1899. doi: 10.1109/TAC.2000.880994 [23] 王华吉, 简金蕾, 雷虎民, 等.带扩张状态观测器的新型滑模导引律.固体火箭技术, 2015, 38(5):522-527. http://www.cnki.com.cn/Article/CJFDTOTAL-GTHJ201505004.htmWANG H J, JIAN J L, LEI H M, et al.A new sliding mode guidance law based on extended state observer.Journal of Solid Rocket Technology, 2015, 38(5):522-527(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-GTHJ201505004.htm [24] 张运喜, 孙明玮, 陈增强.滑模变结构有限时间收敛制导律.控制理论与应用, 2012, 29(11):1413-1418. http://www.cnki.com.cn/Article/CJFDTOTAL-KZLY201211007.htmZHANG Y X, SUN M W, CHEN Z Q.Sliding mode variable structure finite-time convergence guidance law.Control Theory & Applications, 2012, 29(11):1413-1418(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-KZLY201211007.htm [25] ZHU Z, XIA Y Q, FU M Y, et al.An observer-based missile guidance law//CCDC the 23th Chinese Control and Decision Conference.Piscataway, NJ:IEEE Press, 2011:1282-1287. [26] KIM K, KIM Y.Implemental impact angle controlled guidance law design//The 3rd Korea/Japan Joint Workshop on Aeronautics and Astronautics.Piscataway, NJ:IEEE Press, 2002. [27] 吴鹏, 杨明.带终端攻击角度约束的变结构制导律.固体火箭技术, 2008, 31(2):116-120. http://www.cnki.com.cn/Article/CJFDTOTAL-GTHJ200802005.htmWU P, YANG M.Variable structure guidance law with terminal attack angle constraint.Journal of Solid Rocket Technology, 2008, 31(2):116-120(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-GTHJ200802005.htm