-
摘要:
数据更新率是星敏感器的一项重要指标。随着大面阵图像探测器的应用,传统单路质心方法的处理速度已成为更新率的主要瓶颈。为此,提出一种多路快速星点质心提取方法。首先,采用基于目标行方向有效长度的边界目标信息融合技术,能够实现各种形状边界目标信息的正确融合。其次,采用动态双指针循环映射机制,能够对无效信息占用存储资源进行循环利用,大大提高了存储资源的利用效率。最后,对本文方法进行实验测试,并在相同现场可编程门阵列(FPGA)芯片上,与传统单路质心方法的性能进行对比分析。实验结果表明,本文方法处理速度约为传统单路质心方法的3.6倍,但使用的存储资源仅约为后者直接扩展的多路方法的40%,从而验证了本文方法的可行性与有效性。
Abstract:The attitude update rate is one of the most important performance indexes of the star sensor. With the application of the large array image detector, the processing speed of the traditional star extraction method has become the main bottleneck of the update rate. Given that, a multichannel fast star centroid extraction method is proposed in this paper. Firstly, the information fusion technology based on the effective length of the target in the scanning direction is proposed to realize the correct information fusion of various shapes of boundary targets. Secondly, the dynamic dual-pointer cyclic mapping technology is utilized to recycle the memory resources occupied by invalid information, thus greatly improving the utilization efficiency of the memory resources. Finally, the experimental test is carried out to verify the performance of the proposed method, and the performance is compared and analyzed with that of the traditional single channel method on the same field-programmable gate array (FPGA) chip. The experimental results show that the processing speed of the proposed method is about 3.6 times as high as that of the traditional single channel method, while the memory resource used by the proposed method is merely about 40% of that used by the multichannel method which is directly extended by the traditional single channel method. Thus the feasibility and effectiveness of the proposed method are verified.
-
表 1 3种方法的FPGA资源使用情况
Table 1. FPGA resource usage of three methods
方法 资源类型 已使用 总数量 使用率/
%传统单路
质心方法Slice Registers 126 19 200 0.7 Slice LUTs 474 19 200 2.5 Block RAM/FIFO 12 32 37.5 基于本文方法的
改进单路法Slice Registers 520 19 200 2.7 Slice LUTs 1 347 19 200 7.0 Block RAM/FIFO 5 32 15.6 四路法 Slice Registers 1 617 19 200 8.4 Slice LUTs 5 005 19 200 26.1 Block RAM/FIFO 19 32 59.4 表 2 3种方法的处理速度
Table 2. Processing speed of three methods
方法
最大综合频率/
MHz极限星
图帧率/Hz传统单路质心方法 84.474 20.1 基于本文方法的改进单路法 90.171 21.5 四路法 75.786 72.3 -
[1] SUN T, XING F, WANG X C, et al. An accuracy measurement method for star trackers based on direct astronomic observation[J].Scientific Reports, 2016, 6:22593. doi: 10.1038/srep22593 [2] MA L H, ZHAN D J, JIANG G W, et al.Attitude-correlated frames approach for a star sensor to improve attitude accuracy under highly dynamic conditions[J].Applied Optics, 2015, 54(25):7559-7566. doi: 10.1364/AO.54.007559 [3] LIEBE C C.Star trackers for attitude determination[J].IEEE Aerospace and Electronic Systems Magazine, 1995, 10(6):10-16. doi: 10.1109/62.387971 [4] 高自谦, 王海涌, 王永海, 等.捷联惯性/天文/雷达高度表组合导航[J].北京航空航天大学学报, 2017, 43(12):2505-2512.GAO Z Q, WANG H Y, WANG Y H, et al.Strapdown inertial/celestial/radar altimeter integrated navigation[J].Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(12):2505-2512(in Chinese). [5] 李洋, 廖志波, 穆生博, 等.星敏感器杂散光抑制方法及仿真分析[J].北京航空航天大学学报, 2016, 42(12):2620-2624.LI Y, LIAO Z B, MU S B, et al.Stray light suppressing technique and simulation for star sensor[J].Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(12):2620-2624(in Chinese). [6] 程龙, 王栋, 谷松, 等.星敏感器支撑结构多目标拓扑优化设计与试验[J].红外与激光工程, 2017, 46(5):175-183.CHENG L, WANG D, GU S, et al.Multi-objective topology optimization design and test for support structure of star sensor[J].Infrared and Laser Engineering, 2017, 46(5):175-183(in Chinese). [7] 毛晓楠, 周琦, 马英超, 等.浦江一号卫星星敏感器在轨测量精度分析[J].红外与激光工程, 2017, 46(5):117-123.MAO X N, ZHOU Q, MA Y C, et al.Star tracker accuracy analysis of PuJiang Satellite-1 in orbit[J].Infrared and Laser Engineering, 2017, 46(5):117-123(in Chinese). [8] 魏新国, 张广军, 江洁.星敏感器中星图图像的星体细分定位方法研究[J].北京航空航天大学学报, 2003, 29(9):812-815. doi: 10.3969/j.issn.1001-5965.2003.09.014WEI X G, ZHANG G J, JIANG J.Subdivided locating method of star image for star sensor[J].Journal of Beijing University of Aeronautics and Astronautics, 2003, 29(9):812-815(in Chinese). doi: 10.3969/j.issn.1001-5965.2003.09.014 [9] SHORTIS M R, CLARKE T A, SHORT T.Comparison of some techniques for the subpixel location of discrete target images[C]//Proceedings of SPIE on Photonics for Industrial Applications.Washington: SPIE Digital Library, 1994, 2350: 239-250. [10] WANG H Y, XU E S, LI Z F, et al.Gaussian analytic centroiding method of star image of star tracker[J].Advances in Space Research, 2015, 56(10):2196-2205. doi: 10.1016/j.asr.2015.08.027 [11] DELABIE T, DE SCHUTTER J, VANDENBUSSCHE B.An accurate and efficient Gaussian fit centroiding algorithm for star trackers[J].Journal of the Astronautical Sciences, 2014, 61(1):60-84. doi: 10.1007/s40295-015-0034-4 [12] ZHOU F Q, ZHAO J X, YE T, et al.Fast star centroid extraction algorithm with sub-pixel accuracy based on FPGA[J].Journal of Real-Time Image Processing, 2016, 12(3):613-622. doi: 10.1007/s11554-014-0408-z [13] 郝雪涛, 江洁, 张广军.CMOS星敏感器图像驱动及实时星点定位算法[J].北京航空航天大学学报, 2005, 31(4):381-384. doi: 10.3969/j.issn.1001-5965.2005.04.002HAO X T, JIANG J, ZHANG G J.CMOS star sensor image acquisition and real-time star centroiding algorithm[J].Journal of Beijing University of Aeronautics and Astronautics, 2005, 31(4):381-384(in Chinese). doi: 10.3969/j.issn.1001-5965.2005.04.002 [14] 樊巧云, 张广军.离散噪声图像的光斑质心算法及其硬件实现[J].光学精密工程, 2011, 19(12):2992-2998.FAN Q Y, ZHANG G J.Spot centroiding algorithm for discrete noise image and its hardware implementation[J].Optics and Precision Engineering, 2011, 19(12):2992-2998(in Chinese). [15] WANG X L, WEI X G, FAN Q Y, et al.Hardware implementation of fast and robust star centroid extraction with low resource cost[J].IEEE Sensors Journal, 2015, 15(9):4857-4865. doi: 10.1109/JSEN.2015.2428434 [16] LIEBE C C.Accuracy performance of star trackers-A tutorial[J].IEEE Transactions on Aerospace and Electronic Systems, 2002, 38(2):587-599. doi: 10.1109/TAES.2002.1008988 -