留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CFRP超声振动套磨钻孔高效排屑机理和实验

李哲 王新 张毅 侯博 张德远

李哲, 王新, 张毅, 等 . CFRP超声振动套磨钻孔高效排屑机理和实验[J]. 北京航空航天大学学报, 2020, 46(1): 229-240. doi: 10.13700/j.bh.1001-5965.2018.0620
引用本文: 李哲, 王新, 张毅, 等 . CFRP超声振动套磨钻孔高效排屑机理和实验[J]. 北京航空航天大学学报, 2020, 46(1): 229-240. doi: 10.13700/j.bh.1001-5965.2018.0620
LI Zhe, WANG Xin, ZHANG Yi, et al. Mechanism and experiment on high-efficiency chip removal in ultrasonic vibration core drilling of CFRP[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(1): 229-240. doi: 10.13700/j.bh.1001-5965.2018.0620(in Chinese)
Citation: LI Zhe, WANG Xin, ZHANG Yi, et al. Mechanism and experiment on high-efficiency chip removal in ultrasonic vibration core drilling of CFRP[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(1): 229-240. doi: 10.13700/j.bh.1001-5965.2018.0620(in Chinese)

CFRP超声振动套磨钻孔高效排屑机理和实验

doi: 10.13700/j.bh.1001-5965.2018.0620
详细信息
    作者简介:

    李哲  男, 博士, 工程师。主要研究方向:复合材料等难加工材料及其构件先进制造及高效精密加工装配与装备技术、数字智能化设计制造与装配技术、振动切削与功率超声技术

    张德远  男, 博士, 教授, 博士生导师。主要研究方向:复合材料等难加工材料及其构件高效精密加工与装配技术、振动切削与功率超声技术

    通讯作者:

    张德远. E-mail: zhangdy@buaa.edu.cn

  • 中图分类号: V19

Mechanism and experiment on high-efficiency chip removal in ultrasonic vibration core drilling of CFRP

More Information
  • 摘要:

    针对碳纤维增强复合材料(CFRP)在普通套磨钻孔(CCD)过程中,切屑粉尘粘刀和料芯堵刀导致的排屑效果较差而影响套磨加工效率和加工质量的问题,采用超声振动套磨钻孔(UVCD)新技术进行了CFRP高效套磨钻孔的基础理论和实验研究。从理论上分析了CFRP超声振动套磨钻孔原理和高效排屑机理,同时结合所设计的超声振动气钻和车床平台实验验证了CFRP超声振动套磨钻孔的高效排屑钻孔效果。结果表明:相比于CFRP普通套磨钻孔,超声振动套磨钻孔极大提高了切屑粉尘和料芯的排屑效果,有效防止了切屑粉尘粘刀和料芯堵刀现象,明显降低了12%~20%的钻削力、16%~24%的切削温度和33%~39%的孔表面粗糙度,明显改善了CFRP孔加工质量并且延长了套磨刀具使用寿命。

     

  • 图 1  CFRP超声振动套磨原理示意图

    Figure 1.  Schematic of UVCD principle of CFRP

    图 2  UVCD过程套刀单颗磨粒运动轨迹示意图

    Figure 2.  Schematic of motion trajectory of single grain on diamond core drill in UVCD process

    图 3  CCD和UVCD的合速度与合加速度对比

    Figure 3.  Comparison of synthetic cutting velocity and acceleration in CCD and UVCD

    图 4  CCD连续切削过程套刀前端面单颗磨粒切削及切屑黏附过程模型

    Figure 4.  Model of single grain cutting and chip adhesion of core drill end face in CCD with continuous cutting process

    图 5  UVCD分离切削过程套刀前端面单颗磨粒切削及高效排屑过程模型

    Figure 5.  Model of single grain cutting and high-efficiency chip removal of core drill end face in UVCD with separated cutting process

    图 6  CCD连续切削过程套刀侧壁单颗磨粒切削及切屑黏附过程模型

    Figure 6.  Model of single grain cutting and chip adhesion of core drill lateral face in CCD with continuous cutting process

    图 7  UVCD分离切削过程套刀侧壁单颗磨粒切削及高效排屑过程模型

    Figure 7.  Model of single grain cutting and high-efficiency chip removal of core drill lateral face in UVCD with separated cutting process

    图 8  周期性接触-分离的UVCD切削过程的空气流动和切屑排出模型

    Figure 8.  Model of air and chip dredged to flow and eject in UVCD with periodic contact and separation cutting process

    图 9  UVCD提高料芯排出和防止料芯堵塞套磨刀具模型

    Figure 9.  Model of improved rod removal and prevention of rod jammed into core drill in UVCD

    图 10  实验中套刀及其磨粒分布

    Figure 10.  Diamond core drill in experiment and associated grain distribution

    图 11  CFRP超声振动套磨实验平台

    Figure 11.  Experimental platform of UVCD of CFRP

    图 12  CFRP普通套磨和超声振动套磨在第1、5和8个孔后的排屑效果对比

    Figure 12.  Comparison of removal effects of chip and rod after the first, fifth and eighth drilled hole in CCD and UVCD of CFRP

    图 13  CFRP普通套磨和超声振动套磨的钻削力与切削温度对比

    Figure 13.  Comparison of thrust force and cutting temperature in CCD and UVCD of CFRP

    图 14  CFRP普通套磨和超声振动套磨在第8个孔后刀具磨粒微观观察

    Figure 14.  Microscopic observation of tool grain after the eighth drilled hole in CCD and UVCD of CFRP

    图 15  CFRP普通套磨和超声振动套磨的孔表面粗糙度对比

    Figure 15.  Comparison of surface roughness in CCD and UVCD of CFRP

    图 16  CFRP普通套磨和超声振动套磨在第1、5和8个孔后表面质量微观观察

    Figure 16.  Microscopic observation of surface quality after the first, fifth and eighth drilled hole in CCD and UVCD of CFRP

    表  1  CFRP普通套磨和超声振动套磨实验条件

    Table  1.   Experimental conditions in CCD and UVCD of CFRP

    参数 CCD UVCD
    钻孔直径/mm 7.5 7.5
    钻孔深度/mm 5 5
    磨粒粒径/mm 0.25 0.25
    转速/(r·min-1) 6 000 6 000
    进给/(mm·s-1) 0.5 0.5
    超声振动频率/kHz 0 21.5
    振幅/μm 0 7.5
    注:CCD与UVCD刀具类型均为套刀,均不冷却。
    下载: 导出CSV
  • [1] 杜善义, 关志东.我国大型客机先进复合材料技术应对策略思考[J].复合材料学报, 2008, 25(1):1-10. doi: 10.3321/j.issn:1000-3851.2008.01.001

    DU S Y, GUAN Z D.Strategic considerations for development of advanced composite technology for large commercial aircraft in China[J].Acta Materiae Compositae Sinica, 2008, 25(1):1-10(in Chinese). doi: 10.3321/j.issn:1000-3851.2008.01.001
    [2] 沈军, 谢怀勤.先进复合材料在航空航天领域的研发与应用[J].材料科学与工艺, 2008, 16(5):737-740. doi: 10.3969/j.issn.1005-0299.2008.05.036

    SHEN J, XIE H Q.Development of research and application of the advanced composite materials in the aerospace engineering[J].Materials Science and Technology, 2008, 16(5):737-740(in Chinese). doi: 10.3969/j.issn.1005-0299.2008.05.036
    [3] 杜善义.先进复合材料与航空航天[J].复合材料学报, 2007, 24(1):1-12. doi: 10.3321/j.issn:1000-3851.2007.01.001

    DU S Y.Advanced composite materials and aerospace engineering[J]. Acta Materiae Compositae Sinica, 2007, 24(1):1-12(in Chinese). doi: 10.3321/j.issn:1000-3851.2007.01.001
    [4] 陈亚莉.F-35战斗机复合材料蒙皮的切削加工技术[J].航空制造技术, 2010(15):34-36. doi: 10.3969/j.issn.1671-833X.2010.15.003

    CHEN Y L.Cutting technology for F-35 composites skin[J]. Aeronautical Manufacturing Technology, 2010(15):34-36(in Chinese). doi: 10.3969/j.issn.1671-833X.2010.15.003
    [5] 廖勋鸿, 廖名华, 王鑫秀, 等.C/C复合材料在火箭发动机和飞机上的应用[J].炭素, 2002(3):11-13. doi: 10.3969/j.issn.1001-8948.2002.03.008

    LIAO X H, LIAO M H, WANG X X, et al.Application of C/C composite materials for rocket engine and airplane[J].Carbon, 2002(3):11-13(in Chinese). doi: 10.3969/j.issn.1001-8948.2002.03.008
    [6] 蔡闻峰, 薛小平.先进复合材料结构飞机机械连接技术现状及发展方向[J].航空精密制造技术, 2010(2):22-24. http://d.old.wanfangdata.com.cn/Periodical/hkjmzzjs201002021

    CAI W F, XUE X P.State-of-art and development direction of mechanical connection technology for advanced composite structure aircraft[J]. Aviation Precision Manufacturing Technology, 2010(2):22-24(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/hkjmzzjs201002021
    [7] 谢海龙, 董志刚, 康仁科, 等.C/E复合材料螺旋铣孔切屑形状与出口温度研究[J].北京航空航天大学学报, 2017, 43(2):328-334. doi: 10.13700/j.bh.1001-5965.2016.0161

    XIE H L, DONG Z G, KANG R K, et al.Chips and cutting temperature of helical milling of C/E composites[J].Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(2):328-334(in Chinese). doi: 10.13700/j.bh.1001-5965.2016.0161
    [8] WANG B, GAO H, WEN Q, et al.Influence of cutting heat on quality of drilling of carbon/epoxy composites[J].Materials and Manufacturing Processes, 2012, 27(9):968-972. doi: 10.1080/10426914.2011.610079
    [9] 张厚江.碳纤维复合材料(CFRP)钻削加工技术的研究[D].北京: 北京航空航天大学, 1998. http://cdmd.cnki.com.cn/Article/CDMD-10006-2005113709.htm

    ZHANG H J.Study on the drilling technology of CFRP[D].Beijing: Beihang University, 1998(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10006-2005113709.htm
    [10] WEI J C, JIAO G Q, JIA P R, et al.The effect of interference fit size on the fatigue life of bolted joints in composite laminates[J].Composites Part B:Engineering, 2013, 53:62-68. doi: 10.1016/j.compositesb.2013.04.048
    [11] SALEEM M, TOUBAL L, ZITOUNE R, et al. Investigating the effect of machining processes on the mechanical behavior of composite plates with circular holes[J].Composites Part A:Applied Science and Manufacturing, 2013, 55:169-177. doi: 10.1016/j.compositesa.2013.09.002
    [12] KARIMI N Z, HEIDARY H, AHMADI M. Residual tensile strength monitoring of drilled composite materials by acoustic emission[J]. Materials and Design, 2012, 40:229-236. doi: 10.1016/j.matdes.2012.03.040
    [13] HE C H, TSAO C C.Effects of special drill bits on drilling-induced delamination of composite materials[J].International Journal of Machine Tools and Manufacture, 2006, 46(12-13):1403-1416. doi: 10.1016/j.ijmachtools.2005.10.004
    [14] TSAO C C, HE C H.Parametric study on thrust force of diamond core drill[J].Journal of Materials Processing Technology, 2007, 192:37-40. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c2a148b69af9f4f7b508bd0d54df2330
    [15] HE C H, TSAO C C.Effects of peripheral drilling moment on delamination using special drill bits[J].Journal of Materials Processing Technology, 2008, 201(1):471-476. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3bab71a12e9ed89bea10417a21d0fa4d
    [16] LIU J, ZHANG D Y, QIN L G, et al.Feasibility study of the rotary ultrasonic elliptical machining of carbon fiber reinforced plastics (CFRP)[J].International Journal of Machine Tools and Manufacture, 2012, 53(1):141-150. doi: 10.1016/j.ijmachtools.2011.10.007
    [17] GENG D X, ZHANG D Y, XU Y G, et al.Comparison of drill wear mechanism between rotary ultrasonic elliptical machining and conventional drilling of CFRP[J].Journal of Reinforced Plastics and Composites, 2014, 33(9):797-809. doi: 10.1177/0731684413518619
    [18] 张瑞风.复合材料数控钻铣实验台研制及功能实验研究[D].大连: 大连理工大学, 2010. http://cdmd.cnki.com.cn/Article/CDMD-10141-1011023010.htm

    ZHANG R F.Development of CNC machine tool for drilling & milling composite materials and experimental studies on its functions[D].Dalian: Dalian University of Technology, 2010(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10141-1011023010.htm
    [19] CONG W L, FENG Q, PEI Z J, et al.Rotary ultrasonic machining of carbon fiber-reinforced plastic composites:Using cutting fluid vs.cold air as coolant[J].Journal of Composite Materials, 2012, 46, 14(2):1745-1753. http://cn.bing.com/academic/profile?id=06707f9381d373d00192c9b527846e23&encoded=0&v=paper_preview&mkt=zh-cn
    [20] CONG W L, PEI Z J, DEINES T W, et al.Rotary ultrasonic machining of CFRP using cold air as coolant:Feasible regions[J].Journal of Reinforced Plastics and Composites, 2011, 30(10):899-906. doi: 10.1177/0731684411416266
    [21] CONG W L, PEI Z J, FENG Q, et al.Rotary ultrasonic machining of CFRP:A comparison with twist drilling[J].Journal of Reinforced Plastics and Composites, 2012, 31(5):313-321. doi: 10.1177/0731684411427419
    [22] ZHANG L B, WANG L J, LIU X Y, et al.Mechanical model for predicting thrust and torque in vibration drilling fibre-reinforced composite materials[J].International Journal of Machine Tools and Manufacture, 2001, 41(5):641-657. doi: 10.1016/S0890-6955(00)00105-X
    [23] 隈部淳一郎.精密加工振动切削(基础与应用)[M].韩一昆, 薛万夫, 孙祥根, 译.北京: 机械工业出版社, 1985: 19-96.

    KUMABE J.Precision machining and vibration cutting-foundation and application[M].HAN Y K, XUE W F, SUN X G, translated.Beijing: China Machine Press, 1985: 19-96(in Chinese).
    [24] 梁延德, 魏剑宇, 何福本, 等.超声波近场悬浮稳定性提高方法与实验研究[J].机械设计与制造, 2015(11):46-49. doi: 10.3969/j.issn.1001-3997.2015.11.012

    LIANG Y D, WEI J Y, HE F B, et al.The improvement method and experiment study of levitated stability in near field acoustic levitation[J].Machinery Design and Manufacture, 2015(11):46-49(in Chinese). doi: 10.3969/j.issn.1001-3997.2015.11.012
    [25] CHU B T, APFEL R E.Acoustic radiation pressure produced by a beam of sound[J].Journal of the Acoustical Society of America, 1982, 72(6):1673-1687. doi: 10.1121/1.388660
  • 加载中
图(16) / 表(1)
计量
  • 文章访问数:  713
  • HTML全文浏览量:  88
  • PDF下载量:  335
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-10-29
  • 录用日期:  2019-02-16
  • 网络出版日期:  2020-01-20

目录

    /

    返回文章
    返回
    常见问答