留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于度中心性的AFDX网络拓扑生成

王智宇 何锋 谷晓燕

王智宇, 何锋, 谷晓燕等 . 基于度中心性的AFDX网络拓扑生成[J]. 北京航空航天大学学报, 2019, 45(11): 2327-2334. doi: 10.13700/j.bh.1001-5965.2019.0123
引用本文: 王智宇, 何锋, 谷晓燕等 . 基于度中心性的AFDX网络拓扑生成[J]. 北京航空航天大学学报, 2019, 45(11): 2327-2334. doi: 10.13700/j.bh.1001-5965.2019.0123
WANG Zhiyu, HE Feng, GU Xiaoyanet al. AFDX network topology generation based on degree centrality[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(11): 2327-2334. doi: 10.13700/j.bh.1001-5965.2019.0123(in Chinese)
Citation: WANG Zhiyu, HE Feng, GU Xiaoyanet al. AFDX network topology generation based on degree centrality[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(11): 2327-2334. doi: 10.13700/j.bh.1001-5965.2019.0123(in Chinese)

基于度中心性的AFDX网络拓扑生成

doi: 10.13700/j.bh.1001-5965.2019.0123
基金项目: 

国家自然科学基金 71701020

装备预研领域基金 61403120404

中国民航大学天津市民用航空器适航与维修重点实验室开放基金 2017SW02

北京信息科技大学“勤信英才”培养计划 QXTCPC201707

详细信息
    作者简介:

    王智宇  女, 硕士研究生。主要研究方向:实时网络

    何锋  男, 博士, 副教授。主要研究方向:航空电子综合、实时调度、实时网络

    谷晓燕   女, 博士, 副教授。主要研究方向:复杂网络、数据分析与智能决策、风险管理

    通讯作者:

    何锋. E-mail:robinleo@buaa.edu.cn

  • 中图分类号: V247;TP393

AFDX network topology generation based on degree centrality

Funds: 

National Natural Science Foundation of China 71701020

Equiprnent Per-Research Field Foundation 61403120404

Open Found of Tianjin Civil Aircraft Airworthiness and Maintenance Key Laboratory of Civil Aviation University of China 2017SW02

Qin Xin Talents Cultivation Program of Beijing Information Science & Technology University QXTCPC201707

More Information
  • 摘要:

    航空电子系统随着任务需求和技术的发展不断向深度综合演进,其系统的复杂性给网络的设计和验证带来了巨大的挑战,如何通过网络生成实现受限资源条件下航电信息交互的实时性能保障是目前亟待解决的问题。针对目前存在的无法对航电网络进行实时性调控的拓扑设计方法进行改进,依据终端节点之间所有虚拟链路的最大通信帧长之和的大小关系,提出一种基于度中心性理论的航空电子全双工交换式以太网(AFDX)网络拓扑生成算法。将终端节点之间数据帧长作为节点度的衡量标准,对所有终端节点进行集合划分,并根据集合中终端节点的数据帧长对交换机进行连接。采用确定性网络演算以及仿真的方法对基于度中心性的AFDX网络拓扑生成算法进行效能评估。利用确定性网络演算方法,在小规模虚拟链路(VL)的组网下,结果显示:基于度中心性的拓扑生成算法生成的网络拓扑中75%的VLs实时性能优于原始人工设计的网络拓扑,且端到端延迟平均减小9.37%。利用OMNet++仿真方法,在1 400条虚拟链路的组网规模下,结果显示:基于度中心性的拓扑生成算法生成的网络拓扑中94.3%的VLs实时性能优于人为规划网络拓扑,且端到端延迟平均减小50.2%。由此表明:基于度中心性的拓扑生成算法很大程度上提高了网络的实时性能保障。

     

  • 图 1  端系统模型抽象图[10]

    Figure 1.  Schematic of end system model[10]

    图 2  一组交换机端口模型图[10]

    Figure 2.  One set of switch port models[10]

    图 3  核心处理节点集合划分流程图

    Figure 3.  Core processing node set division flowchart

    图 4  基于度中心性的AFDX网络拓扑生成算法

    Figure 4.  AFDX network topology generation algorithm based on degree centrality

    图 5  人为规划网络拓扑

    Figure 5.  Artificially designed network topology

    图 6  算法生成网络拓扑

    Figure 6.  Algorithm generated network topology

    图 7  确定性网络演算分析模型

    Figure 7.  Deterministic network calculus analysis model

    图 8  网络演算对比人为规划网络拓扑和算法生成拓扑最坏端到端延迟

    Figure 8.  Network calculus comparison of the worst end-to-end delay between artificially designed network topology and algorithm generated network topology

    图 9  人为规划拓扑和算法生成拓扑平均端到端延迟仿真对比

    Figure 9.  Simulation comparison of average end-to-end delay between artificially designed network topology and algorithm generated topology

    表  1  网络参数配置信息

    Table  1.   Network parameter configuration information

    VL 源节点 目的节点 每条VL最大通信帧长/Byte BAG/ms
    1~50 1 3 540 128
    51~100 1 5 334 32
    101~110 1 23 200 32
    111~160 2 9 1510 64
    161~210 2 17 55 64
    211~260 2 24 100 32
    261~280 2 4 144 32
    281~330 4 7 670 8
    331~380 4 19 126 4
    381~430 5 20 203 4
    431~480 6 16 132 16
    481~530 6 23 411 16
    531~560 7 6 90 16
    561~590 7 19 46 2
    591~620 8 11 76 32
    621~680 8 17 23 64
    681~730 10 2 258 64
    731~780 10 8 560 32
    781~810 11 9 640 8
    811~840 11 8 710 32
    841~870 13 16 861 16
    871~880 14 12 96 16
    881~900 15 13 147 64
    901~1000 18 21 100 128
    1001~1100 22 6 460 128
    1101~1200 24 11 200 32
    1201~1300 16 21 340 32
    1301~1400 17 14 260 32
    下载: 导出CSV

    表  2  网络演算配置信息

    Table  2.   Network calculus configuration information

    VL 源节点 目的节点 每条VL最大通信帧长/Byte BAG/ms
    1~5 1 3 540 128
    111~116 2 9 1510 64
    161~165 2 17 55 64
    381~385 5 20 203 4
    431~435 6 16 132 16
    561~565 7 19 46 2
    781~785 11 9 640 8
    871~875 14 12 96 16
    1101~1105 24 11 200 32
    1301~1305 17 14 260 128
    下载: 导出CSV
  • [1] WANG H C, NIU W S.Design and analysis of AFDX network based high-speed avionics system of civil aircraft[J]. Advanced Materials Research, 2012, 462:445-451. doi: 10.4028/www.scientific.net/AMR.462.445
    [2] SUTHAPUTCHAKUN C, SUN Z, KAVADIAS C, et al.Performance analysis of AFDX switch for space onboard data networks[J]. IEEE Transactions on Aerospace & Electronic Systems, 2016, 52(4):1714-1727. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ee9cda97144bd3a8c807539f9722cc32
    [3] SHENG L, GUANG X, CHEN F, et al.A review on complex network dynamics in evolutionary algorithm[C]//IEEE Trustcom/BigDataSE/ISPA.Piscataway, NJ: IEEE Press, 2017: 2221-2226. http://www.researchgate.net/publication/313543668_A_Review_on_Complex_Network_Dynamics_in_Evolutionary_Algorithm
    [4] BATOOL K, NIAZI M A.Modeling the internet of things:A hybrid modeling approach using complex networks and agent-based models[J]. Complex Adaptive Systems Modeling, 2017, 5(1):1-4. doi: 10.1186/s40294-016-0040-9
    [5] DOU B L, ZHANG S Y.Model for congestion dynamics on complex networks with traffic-awareness routing strategy[C]//20108th World Congress on Intelligent Control and Automation.Piscataway, NJ: IEEE Press, 2010: 5325-5330. http://www.researchgate.net/publication/238517086_model_for_congestion_dynamics_on_complex_networks_with_traffic-awareness_routing_strategy?ev=auth_pub
    [6] 杨海涛.复杂信息网络性能设计[M].北京:中国宇航出版社, 2014:39-50.

    YANG H T.Complex information network performance design[M]. Beijing:China Aerospace Publishing House, 2014:39-50(in Chinese).
    [7] ANDRES V, LLOPIS L J.Topology control for wireless mesh networks based on centrality metrics[C]//Proceedings of the 10th ACM Symposium on Performance Evaluation of Wireless Ad Hoc, Sensor, & Ubiquitous Networks, 2013: 25-32.
    [8] RACHMAN Z A, MAHARANI W.The analysis and implementation of degree centrality in weighted graph in social network analysis[C]//2013 International Conference of Information and Communication Technology (ICoICT), 2013: 72-76.
    [9] PIOTR B, SKIBICKI K, KAZIENKO P, et al.A degree centrality in multi-layered social network[C]//International Conference on Computational Aspects of Social Networks.Piscataway, NJ: IEEE Press, 2011: 19-21. http://www.oalib.com/paper/4035130
    [10] 黄臻, 张勇涛, 熊华钢.基于离散事件方法的AFDX建模与仿真[J].北京航空航天大学学报, 2011, 37(10):1326-1333. https://bhxb.buaa.edu.cn/CN/abstract/abstract12113.shtml

    HUANG Z, ZHANG Y T, XIONG H G.AFDX modeling and simulation based on discrete event method[J]. Journal of Beijing University of Aeronautics and Astronautics, 2011, 37(10):1326-1333(in Chinese). https://bhxb.buaa.edu.cn/CN/abstract/abstract12113.shtml
    [11] 赵琳, 何锋, 熊华钢.航空电子AFDX与AVB传输实时性抗干扰对比[J].北京航空航天大学学报, 2017, 43(12):2359-2369. https://bhxb.buaa.edu.cn/CN/abstract/abstract14271.shtml

    ZHAO L, HE F, XIONG H G.Comparison of real-time anti-jamming transmission for avionics AFDX and AVB[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(12):2359-2369(in Chinese). https://bhxb.buaa.edu.cn/CN/abstract/abstract14271.shtml
    [12] ZHANG X, WANG Y.Research of AFDX network delay based on modified network calculus[C]//IEEE International Conference on Network Infrastructure & Digital Content.Piscataway, NJ: IEEE Press, 2012: 178-181. http://www.researchgate.net/publication/261236734_Research_of_AFDX_network_delay_based_on_modified_network_calculus
    [13] SONI A, LI X, SCHARBARG J L, et al.Work in progress paper: Pessimism analysis of network calculus approach on AFDX networks[C]//International Symposium on Industrial Embedded Systems (SIES).Piscataway, NJ: IEEE Press, 2017: 1-4.
    [14] MOY M, ALTISEN K.Arrival curves for real-time calculus: The causality problem and its solutions[C]//International Conference on Tools & Algorithms for the Construction & Analysis of Systems, 2010: 358-372. http://www.springerlink.com/content/r3616574876751g1
    [15] CIUCU F, BURCHARD A.A network service curve approach for the stochastic analysis of networks[J]. ACM Sigmetrics Performance Evaluation Review, 2005, 33(1):279-290. doi: 10.1145/1071690.1064251
    [16] BAUER H, SCHARBARG J L, FRABOUL C.Improving the worst-case delay analysis of an AFDX network using an optimized trajectory approach[J]. IEEE Transactions on Industrial Informatics, 2010, 6(4):521-533. doi: 10.1109/TII.2010.2055877
    [17] REJEB N, SALEM A K, SAOUD S B.AFDX simulation based on TTEthernet model under OMNeT++[C]//2017 International Conference on Advanced Systems and Electric Technologies(IC_ASET).Piscataway, NJ: IEEE Press, 2017: 423-429.
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  912
  • HTML全文浏览量:  160
  • PDF下载量:  309
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-22
  • 录用日期:  2019-07-05
  • 网络出版日期:  2019-11-20

目录

    /

    返回文章
    返回
    常见问答