留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于脱靶量级数解的最优机动突防策略

王亚帆 周韬 陈万春 赫泰龙

王亚帆, 周韬, 陈万春, 等 . 基于脱靶量级数解的最优机动突防策略[J]. 北京航空航天大学学报, 2020, 46(1): 159-169. doi: 10.13700/j.bh.1001-5965.2019.0135
引用本文: 王亚帆, 周韬, 陈万春, 等 . 基于脱靶量级数解的最优机动突防策略[J]. 北京航空航天大学学报, 2020, 46(1): 159-169. doi: 10.13700/j.bh.1001-5965.2019.0135
WANG Yafan, ZHOU Tao, CHEN Wanchun, et al. Optimal maneuver penetration strategy based on power series solution of miss distance[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(1): 159-169. doi: 10.13700/j.bh.1001-5965.2019.0135(in Chinese)
Citation: WANG Yafan, ZHOU Tao, CHEN Wanchun, et al. Optimal maneuver penetration strategy based on power series solution of miss distance[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(1): 159-169. doi: 10.13700/j.bh.1001-5965.2019.0135(in Chinese)

基于脱靶量级数解的最优机动突防策略

doi: 10.13700/j.bh.1001-5965.2019.0135
详细信息
    作者简介:

    王亚帆, 女, 硕士研究生。主要研究方向:导弹制导与控制

    周韬, 男, 硕士, 副教授, 硕士生导师。主要研究方向:导弹总体设计与仿真、导弹制导与控制

    陈万春, 男, 博士, 教授, 博士生导师。主要研究方向:飞行力学、导弹制导与控制

    通讯作者:

    陈万春, E-mail:wanchun_chen@buaa.edu.cn

  • 中图分类号: V221+.3;TB553

Optimal maneuver penetration strategy based on power series solution of miss distance

More Information
  • 摘要:

    针对比例导引控制的拦截弹,建立高阶制导系统状态空间模型,基于脱靶量级数解公式,对目标最优机动突防策略及其影响因素进行了研究。首先,针对拦截弹的制导系统为线性一阶、线性高阶时,目标最优机动突防效果进行了仿真分析,结果表明拦截弹弹体模型的准确性对突防效果存在影响,高阶系统对应脱靶量更大且效果更真实;将结果与一次阶跃机动和蛇形机动对比,发现最优机动突防效果最佳。然后,建立弹目运动的二维非线性模型,仿真得出目标最优机动产生的脱靶量曲线与线性系统吻合度较高,线性模型选取合适。最后,研究了有效导引比和剩余飞行时间估计误差对最优机动突防效果产生的影响,结果表明有效导引比估计误差对最优机动突防效果影响不大,剩余飞行时间估计误差则会使目标最优机动突防性能大幅下降,甚至部分情况比蛇形机动突防效果差。

     

  • 图 1  一阶系统目标最优机动突防(N=4)

    Figure 1.  Target optimal maneuver penetration of first-order system (N=4)

    图 2  一阶系统目标机动产生脱靶量对比曲线(N=4)

    Figure 2.  Miss distance contrast curves of first-order system for target maneuver (N=4)

    图 3  五阶二项式系统目标阶跃机动产生脱靶量级数解与伴随仿真结果对比曲线

    Figure 3.  Contrast curves between miss distance power series solutions of fifth-order binomial system due to target step maneuver and adjoint simulation results

    图 4  五阶二项式系统目标机动产生脱靶量对比曲线

    Figure 4.  Miss distance contrast curves of fifth-order binomial system for target maneuver

    图 5  高阶系统目标阶跃机动产生脱靶量级数解与伴随仿真结果对比曲线

    Figure 5.  Contrast curves between miss distance power series solutions of high-order system due to target step maneuver and adjoint simulation results

    图 6  高阶系统目标最优机动脱靶量对比曲线

    Figure 6.  Miss distance contrast curves of high-order systems for target optimal maneuver

    图 7  线性最优机动和非线性最优机动脱靶量对比

    Figure 7.  Miss distance comparison between linear and nonlinear optimal maneuver

    图 8  有效导引比存在估计误差时目标机动产生脱靶量

    Figure 8.  Target maneuver miss distance when effective navigation ratio estimation error exists

    图 9  高阶系统目标最优机动突防(G3(s),N=4)

    Figure 9.  Target optimal maneuver penetration of high-order system (G3(s), N=4)

    图 10  目标最优机动脱靶量关于剩余飞行时间标度系数误差的曲线

    Figure 10.  Curves of target optimal maneuver miss distance relative to scale factor error of time to go

    图 11  标度系数误差存在时目标最优机动产生脱靶量

    Figure 11.  Target optimal maneuver miss distance when scale factor error exists

    图 12  目标最优机动脱靶量关于剩余飞行时间零偏误差的曲线

    Figure 12.  Curve of target optimal maneuver miss distance relative to bias error of time to go

    图 13  零偏误差存在时目标最优机动产生脱靶量

    Figure 13.  Target optimal maneuver miss distance when bias error exists

    表  1  一阶系统最优控制切换时刻及最大脱靶量

    Table  1.   Optimal control switching time and maximum miss distance of first-order system

    N tgo/s w(tgo)/m Mmax/m
    3 2.00 7.96 15.85
    4 1.27 3.84 10.87
    4.73 -1.67
    5 0.94 2.27 8.45
    3.31 -1.73
    7.76 0.32
    下载: 导出CSV

    表  2  传递函数系数

    Table  2.   Transfer function coefficient

    传递函数 系数取值
    G2(s) α1=0.066 7, α2=0.133, α3=0.2, α4=0.267, α5=0.333
    G3(s) α1=0.1, α2=0.2, α3=0.56, β=0.1, ξ=0.7
    下载: 导出CSV

    表  3  弹目仿真参数

    Table  3.   Simulation parameter of missile and target

    弹目 初始速度/(m·s-1) 初始高度/m 初始水平位置/m 控制切换时刻
    导弹 915 3 050 0
    目标 305 3 050 (0, 122 00] tgo1=1.82 s, tgo2=4.94 s
    注:总飞行时间为[0, 10]s。
    下载: 导出CSV

    表  4  标度系数误差变化时目标最优机动产生脱靶量(tf=10 s)

    Table  4.   Target optimal maneuver miss distance when scale factor error changes (tf=10 s)

    esf tgo/s Mmax/m
    0.8 tgo1=2.28,tgo2=6.19 53.87
    1.0 tgo1=1.82, tgo2=4.94 66.33
    1.3 tgo1=1.40, tgo2=3.81 48.64
    下载: 导出CSV

    表  5  零偏误差变化时目标最优机动产生脱靶量(tf=10 s)

    Table  5.   Target optimal maneuver miss distance when bias error changes (tf=10 s)

    eb tgo/s Mmax/m
    -0.3 tgo1=2.12,tgo2=5.24 63.26
    0 tgo1=1.82,tgo2=4.94 66.33
    0.7 tgo1=1.12, tgo2=4.24 48.70
    下载: 导出CSV
  • [1] WEISS M.Adjoint method for missile performance analysison state-space models[J].Journal of Guidance, Control and Dynamics, 2005, 28(2):236-248. doi: 10.2514/1.7342
    [2] ZARCHAN P.Tactical and strategic missile guidance[M].6th ed.Reston:AIAA, 2012:35-105.
    [3] LANING J H, BATTIN R H.Random processes in autmatic control[M].New York:McGraw-Hill Book Company, Inc., 1956:225-253.
    [4] BENASHER J Z.Application to missile guidance:Proportional navigation[M].Reston:AIAA, 2010:231-239.
    [5] NESLINE F W, ZARCHAN P.A new look at classical vs modern homing missile guidance[J].Journal of Guidance, Control, and Dynamics, 2012, 4(1):78-85. http://cn.bing.com/academic/profile?id=50b72877a6f170e4e3d792bf57ed3f1d&encoded=0&v=paper_preview&mkt=zh-cn
    [6] 高雁翎, 张保庆.2017年世界弹道导弹防御发展分析[J].战术导弹技术, 2018(1):42-46. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zsddjs201801007

    GAO Y L, ZHANG B Q.2017 world ballistic missile defense development analysis[J].Tactical Missile Technology, 2018(1):42-46(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zsddjs201801007
    [7] 郑玉航, 于海燕, 孙鹏.导弹突防策略与措施研究[J].国防技术基础, 2002(5):46-48. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK200201670536

    ZHENG Y H, YU H Y, SUN P.Study on missile penetration strategies and measures[J].Technology Foundation of National Defence, 2002(5):46-48(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK200201670536
    [8] ZARCHAN P.Proportional navigation and weaving targets[J].Journal of Guidance, Control, and Dynamics, 1995, 18(5):969-974. doi: 10.2514/3.21492
    [9] 雍恩米, 唐国金, 罗亚中.弹道导弹中段机动突防制导问题的仿真研究[J].导弹与航天运载技术, 2005(4):13-18. doi: 10.3969/j.issn.1004-7182.2005.04.003

    YONG E M, TANG G J, LUO Y Z.Research on maneuvering penetration guidance law of ballistic missile in middle-course flight by simulation method[J].Missiles and Space Vehicles, 2005(4):13-18(in Chinese). doi: 10.3969/j.issn.1004-7182.2005.04.003
    [10] SAILARANTA T, SILTAVUORI A, PANKKONEN A. Simple missile models against high-g barrel roll maneuver: AIAA-2011-6570[R].Reston: AIAA, 2011.
    [11] SHINAR J, STEINBERG D.Analysis of optimal evasive maneuvers based on a linearized two-dimensional kinematic model[J].Journal of Aircraft, 1977, 14(8):795-802. doi: 10.2514/3.58855
    [12] 迟泽晨, 李长文, 王健.临近空间导弹最优机动突防控制策略研究[C]//中国空天安全会议, 2017.

    CHI Z C, LI C W, WANG J.Analysis of optimal evasive maneuvers control in near-space[C]//China Space Security Conference, 2017(in Chinese).
    [13] DHANANJAY N, GHOSE D.Accurate time-to-go estimation for proportional navigation guidance[J].Journal of Guidance, Control, and Dynamics, 2014, 37(4):1378-1383. doi: 10.2514/1.G000082
    [14] 庄志洪, 涂建平, 王宏波.导弹目标遭遇过程中的剩余飞行时间估计[J].宇航学报, 2002, 23(5):32-38. doi: 10.3321/j.issn:1000-1328.2002.05.007

    ZHUANG Z H, TU J P, WANG H B.Prediction of time to go during missile-target encounter[J].Journal of Astronautics, 2002, 23(5):32-38(in Chinese). doi: 10.3321/j.issn:1000-1328.2002.05.007
    [15] HE T L, CHEN W C.A new interpretation of adjoint method in linear time-varying system analysis[C]//IEEE International Conference on CIS & RAM.Piscataway, NJ: IEEE Press, 2017: 58-63.
    [16] 赫泰龙, 陈万春, 周浩.高阶线性比例制导系统脱靶量幂级数解[J].航空学报, 2018, 39(11):322241. http://d.old.wanfangdata.com.cn/Periodical/hkxb201811015

    HE T L, CHEN W C, ZHOU H.Power series solution for miss distance of higher-order linear proportional navigation guidance systems.[J].Acta Aeronautica et Astronautica Sinica, 2018, 39(11):322241(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/hkxb201811015
    [17] SPEYER J L, JACOBSON D H.Primer on optimal control theory[M].Philadelphia:Society for Industrial and Applied Mathematics, 2010:79-83.
    [18] MURTAUGH S A, CRIEL H E. Fundamentals of proportional navigation[J]. Spectrum IEEE, 1966, 3(12):75-85. doi: 10.1109/MSPEC.1966.5217080
  • 加载中
图(13) / 表(5)
计量
  • 文章访问数:  864
  • HTML全文浏览量:  135
  • PDF下载量:  368
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-01
  • 录用日期:  2019-08-30
  • 网络出版日期:  2020-01-20

目录

    /

    返回文章
    返回
    常见问答