Improved FMEA method based on PROMETHEE in multi-granular probabilistic linguistic environment
-
摘要:
针对传统故障模式和影响分析(FMEA)方法中存在关于故障模式评估、风险因子权重和风险优先级排序等方面的固有缺陷,提出了一种多粒度概率语言环境下基于偏好顺序结构评估法(PROMETHEE)的改进FMEA方法。该方法运用多粒度概率语言术语集(PLTS)刻画了专家评估信息的多样性和不确定性,并基于二元语义转换函数为引入工具的语言计算模型统一各专家多粒度风险评估信息,运用最优最劣法(BWM)和熵权法相结合的综合赋权法确定风险因子权重,将PROMETHEE拓展到概率语言环境中用于确定故障模式风险优先序。最后,运用托盘交换架故障风险评估案例来验证该方法的适用性和有效性,并进一步通过敏感度与对比分析以显示该方法的优越性。
-
关键词:
- 故障模式和影响分析(FMEA) /
- 概率语言术语集(PLTS) /
- 多粒度语言 /
- 偏好顺序结构评估法(PROMETHEE) /
- 最优最劣法(BWM)
Abstract:With respect to some inherent drawbacks regarding failure mode evaluations, risk factor weights and risk priority ranking in traditional failure mode and effect analysis (FMEA)method, an improved FMEA method based on preference ranking organization method for enrichment evaluations (PROMETHEE) in multi-granular probabilistic linguistic environment was proposed. The multi-granular probabilistic linguistic term sets (PLTS) were used to characterize the diversity and uncertainty of experts' assessment information, and a new linguistic computational model was developed based on the 2-tuple linguistic transformation formulas to unify the multi-granular risk assessment information provided by FMEA team members. Best-worst method (BWM) and the entropy weighting method were adopted to determine subjective and objective combined weights of risk factors. The PROMETHEEE was extended to probabilistic linguistic environment to determine the risk ranking of failure modes. Finally, an empirical case concerning the failure risk evaluation of tray automatic exchange device was presented to demonstrate the practicality and effectiveness of the proposed method, and sensitivity analysis and comparison study were also performed to show its merits.
-
表 1 一致性指数
Table 1. Consistency index
aBW CI 1 0 2 0.44 3 1.00 4 1.63 5 2.30 6 3.00 7 3.73 8 4.47 9 5.23 表 2 3位专家提供的概率语言评估信息
Table 2. Probabilistic linguistic evaluation information provided by three experts
Eq RFj FM1 FM2 FM3 FM4 FM5 FM6 E1 O {s25(0.8)} {s35(0.8), s45(0.2)} {s25(0.8)} {s25(0.8), s35(0.2)} {s15(0.5), s25(0.5)} {s15(0.4), s25(0.6)} S {s25(0.5), s35(0.5)} {s25(0.4), s35(0.4)} {s35(0.4), s45(0.6)} {s35(0.5), s45(0.5)} {s25(0.4), s35(0.6)} {s35(0.8)} D {s35(0.5), s45(0.5)} {s05(0.6), s15(0.4)} {s25(1)} {s45(0.8)} {s15(0.2), s25(0.8))} {s45(1)} E2 O {s37(0.2), s47(0.8)} {s47(0.5), s57(0.5)} {s37(0.8), s47(0.2)} {s37(0.8), s47(0.2)} {s27(0.75), s37(0.25)} {s17(0.4), s27(0.6)} S {s37(0.25), s47(0.75)} {s37(0.2), s47(0.6), s57(0.2)} {s47(0.5), s57(0.5)} {s47(0.4), s57(0.4)} {s37(0.8), s47(0.2)} {s47(0.5), s57(0.5)} D {s47(0.25), s57(0.5), s67(0.25)} {s07(0.25), s17(0.75)} {s27(0.2), s37(0.8)} {s57(0.8), s67(0.2)} {s17(0.25), s27(0.5), s37(0.25)} {s57(0.75), s67(0.25)} E3 O {s37(0.8), s47(0.2)} {s47(0.2), s57(0.2), s67(0.6)} {s37(0.2), s47(0.8)} {s37(0.8), s47(0.2)} {s17(0.4), s27(0.6)} {s27(0.4), s37(0.4)} S {s37(0.25), s47(0.75)} {s37(0.8), s47(0.2)} {s57(0.6), s67(0.2)} {s47(0.8)} {s37(0.25), s47(0.5), s57(0.25)} {s47(0.5), s57(0.5)} D {s47(0.6), s57(0.2)} {s17(0.6), s27(0.4)} {s27(0.75), s37(0.25)} {s57(0.8), s67(0.2)} {s37(0.8)} {s57(0.2), s67(0.8)} 表 3 一致化处理后的专家3故障模式评估信息
Table 3. Unified E'3 s evaluation information of each failure mode
RFj FM1 FM2 FM3 FM4 FM5 FM6 O {s37(0.8)} {s47(0.4), s57(0.4), s67(0.2)} {s37(0.8)} {s37(0.8), s47(0.1), s57(0.1)} {s17(0.25), s27(0.25), s37(0.5)} {s17(0.2), s27(0.2), s37(0.6)} S {s37(0.5), s47(0.25), s57(0.25)} {s37(0.4), s47(0.2), s57(0.2)} {s47(0.2), s57(0.2), s67(0.6)} {s47(0.25), s57(0.25), s67(0.5)} {s37(0.4), s47(0.3), s57(0.3)} {s47(0.4), s57(0.4)} D {s47(0.25), s57(0.25), s67(0.5)} {s07(0.6), s17(0.2), s27(0.2)} {s37(1)} {s67(0.8)} {s17(0.1), s27(0.1), s35(0.8)} {s67(1)} 表 4 群体故障评估矩阵
Table 4. Group failure evaluation matrix
RFj FM1 FM2 FM3 FM4 FM5 FM6 O {s37(0), s47(0.4), s37(0.6)} {s47(0.16), s57(0.36), s67(0.48)} {s37(0), s47(0.4), s37(0.6)} {s57(0.02), s47(0.18), s37(0.8)} {s17(0.21), s37(0.2), s27(0.59)} {s17(0.2), s27(0.48), s37(0.32)} S {s57(0.05), s37(0.3), s47(0.65)} {s57(0.13), s47(0.37), s37(0.5)} {s47(0.24), s67(0.22), s57(0.54)} {s67(0.1), s57(0.25), s47(0.65)} {s57(0.16), s47(0.34), s37(0.5)} {s47(0), s47(0.5), s57(0.5)} D {s67(0.2), s57(0.35), s47(0.45)} {s07(0.22), s27(0.2), s17(0.58)} {s27(0), s27(0.38), s37(0.62)} {s57(0), s67(0.36), s57(0.64)} {s17(0.12), s27(0.22), s37(0.66)} {s57(0), s57(0.38), s67(0.62)} 表 5 最佳标准的风险因子评级向量
Table 5. Preference rating vectors for the best risk factor
Eq RFB O S D E1 S 2 1 8 E2 S 9 1 3 E3 O 1 3 8 表 6 最差标准的风险因子评级向量
Table 6. Preference rating vectors for the worst risk factor
Eq RFW O S D E1 D 2 8 1 E2 O 1 7 4 E3 D 7 3 1 表 7 风险因子主观权重
Table 7. Subjective weights of risk factor
Eq O S D CR E1 0.246 0.663 0.091 0.157 E2 0.078 0.622 0.300 0.191 E3 0.652 0.261 0.087 0.112 wjS 0.341 0.486 0.173 表 8 不同方法故障模式风险排序比较
Table 8. Risk ranking comparison of failure modes by different methods
故障模式 传统FMEA PL-TOPSIS[15] HFL-PROMETHEE[8] PL-PROMETHEE O S D RPN 排序 CI(FMi) 排序 Φ(FMi) 排序 Φ(FMi) 排序 FM1 5 6 7 210 3 -0.743 4 0.176 3 0.050 4 FM2 8 4 6 192 4 -0.962 5 -0.440 5 -0.556 5 FM3 6 8 4 192 4 -0.556 3 0.368 2 0.879 2 FM4 5 6 9 270 1 0 1 2.017 1 1.272 1 FM5 3 6 5 90 5 -1.368 6 -2.167 6 -2.146 6 FM6 4 7 9 252 2 -0.353 2 0.045 4 0.500 3 -
[1] CERTA A, ENEA M, GALANTE G M, et al.ELECTRE TRI based approach to the failure modes classification on the basis of risk parameters:An alternative to the risk priority number[J].Computers & Industrial Engineering, 2017, 108:100-110. http://cn.bing.com/academic/profile?id=18c71a5383fb83df56ba8b19c9d54d02&encoded=0&v=paper_preview&mkt=zh-cn [2] LO H, LIOU J, HUANG C, et al.A novel failure mode and effect analysis model for machine tool risk analysis[J].Reliability Engineering and System Safety, 2019, 183:173-183. doi: 10.1016/j.ress.2018.11.018 [3] LIU H C, YOU J X, CHEN S, et al.An integrated failure mode and effect analysis approach for accurate risk assessment under uncertainty[J].IIE Transactions, 2016, 48(11):1027-1042. doi: 10.1080/0740817X.2016.1172742 [4] HUANG J, LI Z, LIU H C.New approach for failure mode and effect analysis using linguistic distribution assessments and TODIM method[J].Reliability Engineering and System Safety, 2017, 167:302-309. doi: 10.1016/j.ress.2017.06.014 [5] 杜晗恒, 彭翀.基于模糊TOPSIS的FMEA方法[J].北京航空航天大学学报, 2016, 42(2):368-374. https://bhxb.buaa.edu.cn/CN/abstract/abstract13787.shtmlDU H H, PENG C.Failure mode and effects analysis method based on fuzzy TOPSIS[J].Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(2):368-374(in Chinese). https://bhxb.buaa.edu.cn/CN/abstract/abstract13787.shtml [6] SAKTHIVEL G, IKUA B W.Failure mode and effect analysis using fuzzy analytic hierarchy process and GRA TOPSIS in manufacturing industry[J].International Journal of Productivity and Quality Management, 2017, 22(4):466-484. doi: 10.1504/IJPQM.2017.087864 [7] WANG W Z, LIU X W, CHEN X Q, et al.Risk assessment based on hybrid FMEA framework by considering decision maker's psychological behavior character[J].Computers & Industrial Engineering, 2019, 136:516-527. http://cn.bing.com/academic/profile?id=4f06f35eb84e5f29e8c231ffe10a581a&encoded=0&v=paper_preview&mkt=zh-cn [8] 耿秀丽, 邱华清.基于犹豫模糊PROMETHEE Ⅱ的设计方案群决策方法[J].计算机应用研究, 2018, 35(10):3020-3024. doi: 10.3969/j.issn.1001-3695.2018.10.032GENG X L, QIU H Q.Group decision-making method of design concept based on hesitant fuzzy PROMETHEEⅡ[J].Application Research of Computers, 2018, 35(10):3020-3024(in Chinese). doi: 10.3969/j.issn.1001-3695.2018.10.032 [9] LIU H C, YOU J X, DUAN C Y, et al.An integrated approach for failure mode and effect analysis under interval-valued intuitionistic fuzzy environment[J].International Journal of Production Economics, 2019, 207:163-172. doi: 10.1016/j.ijpe.2017.03.008 [10] 王睿, 朱江洪, 李延来.基于直觉模糊MULTIMOORA的改进FMEA风险评估方法[J].计算机集成制造系统, 2018, 24(2):290-301. http://d.old.wanfangdata.com.cn/Periodical/jsjjczzxt201802002WANG R, ZHU J H, LI Y L.Improved FMEA method for risk evaluation based on intuitionistic fuzzy MULTIMOORA[J].Computer Integrated Manufacturing Systems, 2018, 24(2):290-301(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/jsjjczzxt201802002 [11] WANG Z L, YOU J X, LIU H C, et al.Failure mode and effect analysis using soft set theory and COPRAS method[J].International Journal of Computational Intelligence Systems, 2017, 10(1):1002-1015. doi: 10.2991/ijcis.2017.10.1.67 [12] LIU H C, LI Z, SONG W, et al.Failure mode and effect analysis using cloud model theory and PROMETHEE method[J].IEEE Transactions on Reliability, 2017, 66(4):1058-1072. doi: 10.1109/TR.2017.2754642 [13] NIE R X, TIAN Z P, WANG X K, et al.Risk evaluation by FMEA of supercritical water gasification system using multi-granular linguistic distribution assessment[J].Knowledge-Based Systems, 2018, 162:185-201. doi: 10.1016/j.knosys.2018.05.030 [14] RODRIGUEZ R M, MARTÍNEZ L, HERRERA F.Hesitant fuzzy linguistic term sets for decision making[J].IEEE Transactions on Fuzzy Systems.2012, 20(1):109-119. doi: 10.1109/TFUZZ.2011.2170076 [15] PANG Q, WANG H, XU Z.Probabilistic linguistic term sets in multi-attribute group decision making[J].Information Sciences, 2016, 369:128-143. doi: 10.1016/j.ins.2016.06.021 [16] YANG Z, WANG J.Use of fuzzy risk assessment in FMEA of offshore engineering systems[J].Ocean Engineering, 2015, 95:195-204. doi: 10.1016/j.oceaneng.2014.11.037 [17] ZHOU Y, XIA J, ZHONG Y, et al.An improved FMEA method based on the linguistic weighted geometric operator and fuzzy priority[J].Quality Engineering, 2016, 28(4):491-498. doi: 10.1080/08982112.2015.1132320 [18] REZAEI J.Best-worst multi-criteria decision-making method[J].Omega, 2015, 53:49-57. doi: 10.1016/j.omega.2014.11.009 [19] DRAGAN P, GORAN C.The selection of transport and handling resources in logistics centers using multi-attributive border approximation area comparison (MABAC)[J].Expert Systems with Applications, 2015, 42(6):3016-3028. doi: 10.1016/j.eswa.2014.11.057 [20] BRANS J P, VINCKE P, MARESCHAl B.How to select and how to rank projects:The PROMETHEE method[J].European Journal of Operational Research, 1986, 24(2):228-238. doi: 10.1016/0377-2217(86)90044-5 [21] WU X, LIAO H.An approach to quality function deployment based on probabilistic linguistic term sets and ORESTE method for multi-expert multi-criteria decision making[J].Information Fusion, 2018, 43:13-26. doi: 10.1016/j.inffus.2017.11.008 [22] LIU P D, LI Y.The PROMTHEE Ⅱ method based on probabilistic linguistic information and their application to decision making[J].Informatica, 2018, 29(2):303-320. doi: 10.15388/Informatica.2018.169 [23] 张震, 郭崇慧.基于相对熵的多粒度不确定语言型群决策方法[J].大连理工大学学报, 2012, 52(6):921-927. http://www.cnki.com.cn/Article/CJFDTotal-DLLG201206025.htmZHANG Z, GUO C H.A multi-granularity uncertain linguistic group decision-making method based on relative entropy[J].Journal of Dalian University of Technology, 2012, 52(6):921-927(in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-DLLG201206025.htm [24] ZHANG Z, GUO C, MARTÍNEZ L.Managing multi-granular linguistic distribution assessments in large-scale multi-attribute group decision making[J].IEEE Transactions on Systems Man & Cybernetics Systems, 2017, 47(11):3063-3076. http://cn.bing.com/academic/profile?id=241e3f30c5b0807f70570998b38bc7c8&encoded=0&v=paper_preview&mkt=zh-cn [25] 张发明, 袁宇翔, 梁龙武.多粒度不确定语言变量的多属性群决策方法及应用[J].系统管理学报, 2017, 26(6):64-73. http://d.old.wanfangdata.com.cn/Periodical/xtgcllffyy201706008ZHANG F M, YUAN Y X, LIANG L W.Multi-attribute group-decision-making with multi-granularity uncertain linguistic variables and its application[J].Journal of Systems & Management, 2017, 26(6):64-73(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/xtgcllffyy201706008 [26] CHITSAZ N, AZARNIVAND A.Water scarcity management in arid regions based on an extended multiple criteria technique[J].Water Resources Management, 2017, 31(1):233-250. doi: 10.1007/s11269-016-1521-5 [27] LIU P, YOU X.Probabilistic linguistic TODIM approach for multiple attribute decision-making[J].Granular Computing, 2017(12):1-10. http://cn.bing.com/academic/profile?id=03557ec62246248cd70aede9bc69f435&encoded=0&v=paper_preview&mkt=zh-cn