-
摘要:
针对航天领域空间交会对接、航天器配电、在轨服务与维护等领域对无缆化的需求,提出了多通道近场无线能量传输系统,建立了多通道磁耦合近场无线能量传输系统数学模型,分析了影响系统传输效率的重要参数,并对关键参数对系统效率的影响进行了仿真分析。通过线圈高效耦合设计,实现了多通道近场无线能量传输系统的效率最优。所提系统解决了能量的无线传输,并实现多负载接收的问题。通过一台1 000 W多通道近场无线能量传输样机进行了实验研究,结果表明,所提多通道近场无线能量传输装置具有传输效率高的特点,解决了航天器无线能量传输的多负载问题。
Abstract:For the non-cable requirement in space rendezvous and docking, spacecraft power distribution, and on-orbit service and maintenance, the multi-channel near-field wireless energy transmission system is proposed. The multi-channel magnetic coupling near-field wireless energy transmission mathematical model is established, the important parameters that affect the transmission efficiency of the system are analyzed, and the simulation analysis of the influence of key parameters on system efficiency is carried out. Through the efficient coupling design of the coil, the efficiency of the near-field wireless energy transmission system is optimized. The multi-channel near-field wireless energy transmission system proposed in this paper solves the problem of wireless transmission of energy and realization of multi-load reception. Finally, an experimental study was carried out on a 1 000 W multi-channel near-field wireless energy transmission prototype. The experimental results show that the proposed multi-channel near-field wireless transmission device has high transmission efficiency and solves the multi-load problem of spacecraft wireless energy transmission.
-
Key words:
- high power /
- high efficiency /
- step-up/step-down converter /
- control /
- transition
-
表 1 系统参数
Table 1. System parameters
参数 数值 工作频率/kHz 50 初级线圈1输入电压/V 100±10 初级线圈1输入电流/A 0~10 次级线圈2输出功率/W 50~300 次级线圈2输出电压/V 28±1 次级线圈3输出功率/W 300~500 次级线圈3输出电压/V 42±1 表 2 线圈尺寸参数
Table 2. Coil size parameters
参数 线圈1 线圈2 线圈3 外径D0/mm 238 238 238 内径D1/mm 167.4 105 105 线圈层数c 2 2 2 线径d/mm 3.5 3.5 3.5 单层线圈匝数N 8 15 15 表 3 线圈距离参数
Table 3. Coil distance parameters
相对的线圈 横向距离t/mm 径向距离h/mm 1和2 119 100 1和3 119 100 2和3 238 0 表 4 单线圈水平移动实验结果
Table 4. Single coil horizontal movement experimental results
原边 横向位置 副边1 传输效率/% 加入DC-DC变换器后的传输效率/% 电压/V 电流/A 电压/V 电流/A 100 7.87 0 77.80 7.57 74.83 70.34 100 10.17 1/4 90.50 8.63 75.96 71.40 100 10.50 3/8 91.93 8.77 76.76 72.15 100 9.43 1/2 87.13 8.43 77.90 73.22 100 9.37 5/8 86.17 8.23 75.74 71.20 100 8.20 3/4 80.07 7.73 75.51 70.98 100 7.47 0 76.93 7.30 75.22 70.70 表 5 单线圈轴向移动实验结果1
Table 5. Single coil axial movement experimental results 1
原边 横向距离/cm 副边1 传输效率/% 加入DC-DC变换器后的传输效率/% 电压/V 电流/A 电压/V 电流/A 100 8.03 5 84.03 8.03 84.03 78.99 100 7.83 10 77.50 7.40 73.21 68.82 100 4.27 15 48.70 4.60 52.50 49.35 100 3.47 20 30.07 2.80 24.28 22.83 表 6 单线圈轴向移动实验结果2
Table 6. Single coil axial movement experimental results 2
原边 横向距离/cm 副边1 传输效率/% 加入DC-DC变换器后的传输效率/% 电压/V 电流/A 电压/V 电流/A 100 7.13 5 80.10 7.57 84.97 79.87 100 8.73 10 84.33 7.93 76.61 72.01 100 5.03 15 56.27 5.27 58.88 55.35 100 3.03 20 35.17 3.23 37.49 35.24 表 7 单线圈轴向移动实验结果3
Table 7. Single coil axial movement experimental results 3
原边 横向距离/cm 副边1 传输效率/% 加入DC-DC变换器后的传输效率/% 电压/V 电流/A 电压/V 电流/A 100 7.73 5 82.27 7.77 82.62 77.66 100 8.97 10 85.37 8.03 76.48 71.89 100 5.47 15 59.47 5.53 60.19 56.58 100 3.27 20 37.53 3.43 39.45 37.08 表 8 双线圈轴向移动实验结果
Table 8. Double coils' axial movement experimental results
原边 副边1 副边2 传输效率/% 加入DC-DC变换器后的传输效率/% 电压/V 电流/A 横向距离/cm 电压/V 电流/A 横向距离/cm 电压/V 电流/A 100 5.40 5 46.37 4.33 5 51.97 4.87 84.04 79.00 100 7.53 5 70.67 6.83 10 39.47 3.67 83.34 78.34 100 7.80 5 78.67 7.63 15 24.43 2.17 83.75 78.73 100 7.80 5 81.33 7.83 20 14.30 1.20 83.84 78.81 100 9.90 10 65.33 6.27 10 61.53 5.70 76.80 72.19 100 8.33 10 70.67 6.77 15 38.30 3.47 73.39 68.99 100 7.37 10 70.33 6.73 20 23.37 2.03 70.66 66.42 100 6.20 15 47.40 4.53 15 42.97 3.90 61.66 57.96 100 4.97 15 47.83 4.57 20 25.73 2.27 55.73 52.39 100 3.83 20 30.93 2.90 20 28.50 2.57 42.54 39.99 注:副边线圈加入DC-DC变换器调节电压后, 使接收端电压分别为:(28±1) V和(42±1) V。 表 9 双线圈负载变化实验结果
Table 9. Double coils' load change experimental results
原边 副边1 副边2 传输效率/% 加入DC-DC变换器后的传输效率/% 电压/V 电流/A 电压/V 电流/A 电阻/Ω 电压/V 电流/A 电阻/Ω 100 9.10 49.20 9.37 5 52.70 4.90 10 79.02 74.28 100 9.90 65.33 6.27 10 61.53 5.70 10 76.80 72.19 100 10.10 71.00 4.50 15 70.97 6.73 10 78.94 74.20 100 10.73 75.40 4.17 20 74.53 7.03 10 78.11 73.42 100 9.83 76.33 3.13 25 75.60 6.90 10 77.37 72.73 100 9.73 77.67 2.47 30 76.67 7.37 10 77.71 73.05 -
[1] KURS A, KARALIS A, MOFFATT R, et al.Wireless power transfer via strongly coupled magnetic resonances[J].Science, 2007, 317(5834):83-86. doi: 10.1126/science.1143254 [2] 杨庆新, 陈海燕, 徐桂芝, 等.无接触电能传输技术的研究进展[J].电工技术学报, 2010, 25(7):6-13. http://d.old.wanfangdata.com.cn/Periodical/dgjsxb201007002YANG Q X, CHEN H Y, XU G Z, et al.Research progress in contactless power transmission technology[J].Transactions of China Electrotechnical Society, 2010, 25(7):6-13(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/dgjsxb201007002 [3] BASEM M B, ROBERT S G, KERRY R D, et al.Wireless power transfer for telemetric devices with variable orientation, for small rodent behavior monitoring[J].IEEE Sensors Journal, 2015, 15(4):2144-2156. doi: 10.1109/JSEN.2014.2363836 [4] 毛银花.用于无线传感网络的磁共振式无线能量传输系统[D].哈尔滨: 哈尔滨工业大学, 2011: 20. http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CMFD&filename=1012000656.nhMAO Y H.Magnetic resonance wireless energy transmission system for wireless sensor networks[D].Harbin: Harbin Institu-te of Technology, 2011: 20(in Chinese). http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CMFD&filename=1012000656.nh [5] YOUNGKUK C, BONGWOO K, MYUNGBOK K.4 kW magnetic resonance wireless power transfer system[C]//2016 IEEE International Conference on Power System Technology(POWERCON).Piscataway, NJ: IEEE Press, 2016: 1-3. [6] 杨平, 张宏升.无线电能传输技术的应用与研究现状[J].电子机械工程, 2017, 33(3):1-4. doi: 10.3969/j.issn.1008-5300.2017.03.001YANG P, ZHANG H S.Application and research status of radio energy transmission technology[J].Electromechanical Engineering, 2017, 33(3):1-4(in Chinese). doi: 10.3969/j.issn.1008-5300.2017.03.001 [7] LIU Q W, WU J, XIA P F, et al.Charging unplugged:Will distributed laser charging for mobile wireless power transfer work[J].IEEE Vehicular Technology Magazine, 2016, 11(4):36-45. doi: 10.1109/MVT.2016.2594944 [8] MANDACHE L, MARINESCU A, IORDACHE M.On feasibility and optimization of WiTricity technology for implantable medical devices[C]//2016 International Symposium on Fundamentals of Electrical Engineering(ISFEE).Piscataway, NJ: IEEE Press, 2016: 1-6. [9] 陈江.磁感应式无线能量传输控制技术研究[D].哈尔滨: 哈尔滨工程大学, 2014: 32. http://cdmd.cnki.com.cn/Article/CDMD-10217-1017240533.htmCHEN J.Research on magnetic induction wireless energy transmission control technology[D].Harbin: Harbin Engineering University, 2014: 32(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10217-1017240533.htm [10] 赵洪峰, 李睿.磁感应耦合无线电能传输系统控制与效率研究[J].电器与能效管理技术, 2017(20):11-16. http://d.old.wanfangdata.com.cn/Periodical/dydq201720002ZHAO H F, LI R.Research on control and efficiency of magnetic inductively coupled radio energy transmission system[J].Electrical Apparatus and Energy Efficiency Management Technology, 2017(20):11-16(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/dydq201720002 [11] YAO Y, LIU X, WANG Y, et al.LC/CL compensation topology and efficiency-based optimisation method for wireless power transfer[J].IET Power Electronics, 2018, 11(6):1029-1037. doi: 10.1049/iet-pel.2017.0875 [12] 王军强, 吴晶.无线电能传输过程中能效提高的控制方法研究[J].电子质量, 2016(9):56-59. doi: 10.3969/j.issn.1003-0107.2016.09.015WANG J Q, WU J.Research on control method for energy efficiency improvement in radio energy transmission process[J].Electronic Quality, 2016(9):56-59(in Chinese). doi: 10.3969/j.issn.1003-0107.2016.09.015 [13] SUN L, SUN M, MA D, et al.Detecting load resistance and mutual inductance in series-parallel compensated wireless power transfer system based on input-side measurement[J].International Journal of Antennas and Propagation, 2018, 2018:1-6. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5fdcea003cba908350223268fcf25044 [14] GAO P, TIAN Z, WANG X, et al.Effect of the ratio of radial gap to radius of the coils on the transmission efficiency of wireless power transfer via coupled magnetic resonances[J].AIP Advances, 2018, 8(3):035020. doi: 10.1063/1.5024443 [15] ZHONG W, HUI S Y.Reconfigurable wireless power transfer systems with high energy efficiency over wide load range[J].IEEE Transactions on Power Electronics, 2018, 33(7):6379-6390. doi: 10.1109/TPEL.2017.2748161 [16] RUI F, CZARKOWSKI D, LEON F D, et al.Optimal design of resonant coupled multi-receiver wireless power transfer systems[C]//IEEE International Conference on Industrial Technology.Piscataway, NJ: IEEE Press, 2017: 16854155.