-
摘要:
针对发射场射向范围和低温入轨级在停泊轨道上最长允许滑行时间严格受限下,工程设计火星探测任务发射轨道时,优化保障2~3周发射日期窗口的困难,以及精确设计拼接探测器分离点时刻轨道6根数耗时周期长等问题,提出了加入滑行时间限制再精确双向微分修正的设计算法(有别于传统B平面矢量法)。由地球影响球边界速度直接解出长征运载火箭入轨点轨道根数,将火箭飞行星下点弧段表示成滑行时间的分析式,快速找到满足诸多设计约束的初始发射轨道;并解决了考虑探测器小幅深空机动后火箭发射轨道的深入优化问题。精确力学模型下数值微分改进后,获得高精度计算结果,同等可比条件下运算精度不低于STK软件。实现了从地面起飞到抵达近火点的飞行轨道整体优化,确保了首次探火工程的顺利实施。
Abstract:In order to solve the problem of searching for optimized launch period lasting 2-3 weeks for an engineering-oriented Earth-to-Mars transfer trajectory, with constraints from the launch azimuth scope and the longest coast time on parking orbit of the cryogenic final stage, adding coast constraint into models firstly, a forward-backward bi-directional differential correction scheme which is different from the B plane vector method is proposed. It also greatly reduces the required time to accurately design and match all the six orbital elements at the separation point with probe. The hyperbolic orbital elements at the injection point of launch vehicle are directly solved from the boundary velocity at the sphere of influence of the Earth. Meanwhile the flight arc of the ground track is given analytically as a function of the coast time. Initial launch trajectory satisfying the constraints are quickly found. The problem of launch trajectory optimization is solved when considering a small deep space maneuver of Mars probe. High-precision results are obtained using this bi-directional differential correction scheme in the high-precision mechanical model. The analysis shows that the accuracy is matched with the commercial software STK under the same condition. The transfer trajectory starting from liftoff to the nominal periapsis of Mars probe is optimized as a whole, which ensures that our first Mars exploration mission implements successfully.
-
表 1 发射轨道Th=1 849 s, 探测器05 : 25释放, 地球升交出发
Table 1. Trajectory Th=1 849 s, probe released on 05 : 25, ascending from the Earth
轨道根数 EJ2000 SJ2000 ME a -21 424.437 km 1.321 527 5 AU -3 816.831 km e 1.307 039 0 0.241 839 5 2.020 742 1 i/(°) 25.405 23.424 93.000 Ω/(°) 316.214 356.094 156.275 ω/(°) 293.745 293.291 118.136 M/(°) 2.781 57.042 0 Hp 200.0 km 1.001 930 0 AU 500.0 km ΔV/(m·s-1) 4 039.207 0 2 446.974 注:Hp为轨道的近拱点高度(分别相对近地、椭圆近日、近火), M为平近点角。 表 2 发射轨道Th=2 312 s, 探测器03 : 15释放, 地球降交出发
Table 2. Trajectory Th=2 312 s, probe released on 03 : 15, descending from the Earth
轨道根数 EJ2000 SJ2000 ME a -21 373.589 km 1.321 389 5 AU -3 815.267 km e 1.307 769 4 0.241 822 3 2.021 160 4 i/(°) 25.372 23.420 93.000 Ω/(°) 281.242 356.067 156.217 ω/(°) 325.518 293.283 118.191 M/(°) 2.790 57.077 0 Hp 200.0 km 1.001 848 1 AU 500.0 km ΔV/(m·s-1) 4 041.078 0 2 447.373 -
[1] 龙乐豪, 李平岐, 秦旭东, 等.我国航天运输系统60年发展回顾[J].宇航总体技术, 2018, 2(2):1-6. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0120180804886219LONG L H, LI P Q, QIN X D, et al.The review on China space transportation system of past 60 years[J].Astronautical Systems Engineering Technology, 2018, 2(2):1-6(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0120180804886219 [2] JIANG X Q, YANG B, LI S, et al.Overview of China's 2020 Mars mission design and navigation[J].Astrodynamics, 2018, 2(1):1-11. http://cn.bing.com/academic/profile?id=d000691131b89125afcd75180e84f656&encoded=0&v=paper_preview&mkt=zh-cn [3] 褚桂敏.低温上面级滑行段的推进剂管理[J].导弹与航天运载技术, 2007(1):27-31. http://d.old.wanfangdata.com.cn/Periodical/ddyhtyzjs200701007CHU G M.Propellant management of cryogenic upper stage during coast[J]. Missiles and Space Vehicles, 2007(1):27-31(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/ddyhtyzjs200701007 [4] 褚桂敏.低温上面级滑行段的推进剂管理续[J].导弹与航天运载技术, 2007(2):24-29. http://d.old.wanfangdata.com.cn/Periodical/ddyhtyzjs200702006CHU G M.Propellant management of cryogenic upper stage during coast(continue)[J].Missiles and Space Vehicles, 2007(2):24-29(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/ddyhtyzjs200702006 [5] GENG G Y, WANG J, SONG Q, et al.Analysis of typical Earth-Mars launch trajectory on mission profiles and launch window extension[J]. Missiles and Space Vehicles, 2018(1):18-23. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ddyhtyzjs201801004 [6] FOLTA D, DEMCAK S, YOUNG B, et al.Transfer trajectory design for the Mars atmosphere and volatile evolution(MAVEN) mission[EB/OL].(2016-12-19)[2019-04-08]. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20160000802.pdf. [7] BATTIN R H. An introduction to the mathematics and methods of astrodynamics[M]. Revised. Reston: AIAA, 1999. [8] KITZNER W. A method of describing miss distances for lunar and interplanetary trajectories[J].Planetary and Space Science, 1961, 7:125-131. http://cn.bing.com/academic/profile?id=ed45c13af12f637e6bafacbd59a017bd&encoded=0&v=paper_preview&mkt=zh-cn [9] SERGEYEVSKY A B, SNYDER G C, CUNNIFF R A, et al.Interplanetary mission design handbook. Volume 1, Part 2: Earth to Mars ballistic mission opportunities[EB/OL]. (1983-09-15)[2019-04-08]. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19840010158.pdf. [10] GEORGE L E, KOS L D. Interplanetary mission design handbook: Earth-to-Mars mission opportunities and Mars-to-Earth return opportunities 2009-2024[R].Washington, D.C.: NASA, 1998. [11] 李云飞.行星际探测器轨道设计[D].南京: 南京大学, 2009. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y1859778LI Y F. Interplanetary trajectory design[D]. Nanjing: Nanjing University, 2009(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y1859778 [12] WANG Z S, MCVICKER J M, ANDERSON P V, et al. A new formulation of precision transfer trajectory design for Mars missions: AIAA-2010-8253[R].Reston: AIAA, 2010. [13] 尚海滨, 金婷, 王帅, 等.基于B平面参数的行星际小推力轨道制导策略[J].北京理工大学学报, 2013, 33(11):1101-1106. http://d.old.wanfangdata.com.cn/Periodical/bjlgdxxb201311001SHANG H B, JIN T, WANG S, et al. Guidance strategy for interplanetary low-thrust trajectory based on B-plane parameters[J]. Transactions of Beijing Institute of Technology, 2013, 33(11):1101-1106(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/bjlgdxxb201311001 [14] 林扬皓, 赵剡, 吴发林.火星探测器轨道偏差传播分析[J].空间电子技术, 2017(5):41-46. http://d.old.wanfangdata.com.cn/Periodical/kjdzjs201705008LIN Y H, ZHAO Y, WU F L. Analysis of orbit deviation propagation for Mars detector[J].Space Electronic Technology, 2017(5):41-46(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/kjdzjs201705008 [15] HECHLER M, YANEZ A.Mars express orbit design[J].Acta Astronautica, 2003, 53(4-10):497-507. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ025719243/ [16] 耿光有, 王珏, 张志国, 等.深空机动对运载火箭发射火星探测轨道研究[J].宇航学报, 2019, 40(5):117-125. http://d.old.wanfangdata.com.cn/Periodical/yhxb201905004GENG G Y, WANG J, ZHANG Z G, et al. Research on deep space maneuver for Earth-to-Mars trajectory design of long march launch vehicle[J]. Journal of Astronautics, 2019, 40(5):117-125(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/yhxb201905004 [17] 贾沛然, 陈克俊, 何力.远程火箭弹道学[M].长沙:国防科技大学出版社, 1993.JIA P R, CHEN K J, HE L. Long-range launch vehicle flight mechanics[M]. Changsha:National University Defence Technology Press, 1993(in Chinese). [18] 龙乐豪.总体设计(上)[M].北京:宇航出版社, 1991.LONG L H. Overall design(volume Ⅰ)[M]. Beijing:China Astronautic Publishing House, 1991(in Chinese). [19] IZZO D. Revisiting Lambert's problem[J]. Celestial Mechanics and Dynamical Astronomy, 2015, 121(1):1-15. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0234079826/ [20] GOODING R H. A procedure for the solution of Lambert's orbital boundary-value problem[J]. Celestial Mechanics and Dynamical Astronomy, 1990, 48(2):145-165. http://cn.bing.com/academic/profile?id=da3e352402458d3e7a290a731f00b6a9&encoded=0&v=paper_preview&mkt=zh-cn [21] WAGNER S A. Automated trajectory design for impulsive and low thrust interplanetary mission analysis[D]. Ames: Iowa State University, 2014. [22] 刘林, 侯锡云.深空探测器轨道力学[M].北京:电子工业出版社, 2015.LIU L, HOU X Y. Orbit dynamics of deep space spacecraft[M]. Beijing:Publishing House of Electronics, 2015(in Chinese). [23] 耿光有, 李东.运载火箭一级飞行段底部力的机理分析[J].导弹与航天运载技术, 2015(2):67-71. http://d.old.wanfangdata.com.cn/Periodical/ddyhtyzjs201502019GENG G Y, LI D. Base-force mechanism analysis of the launch vehicle's 1st stage flight phase[J]. Missiles and Space Vehicles, 2015(2):67-71(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/ddyhtyzjs201502019 [24] VALLADO D A. Fundamentals of astrodynamics and applications[M].Hawthorne:Microcosm Press, 2015. [25] HU W D. Fundamental spacecraft dynamics and control[M]. Hoboken:Wiley, 2015.