留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于气动导数的类X-37B飞行器纵向稳定性分析

张庆 叶正寅

张庆, 叶正寅. 基于气动导数的类X-37B飞行器纵向稳定性分析[J]. 北京航空航天大学学报, 2020, 46(1): 77-85. doi: 10.13700/j.bh.1001-5965.2019.0188
引用本文: 张庆, 叶正寅. 基于气动导数的类X-37B飞行器纵向稳定性分析[J]. 北京航空航天大学学报, 2020, 46(1): 77-85. doi: 10.13700/j.bh.1001-5965.2019.0188
ZHANG Qing, YE Zhengyin. Longitudinal stability analysis for X-37B like trans-atmospheric orbital test vehicle based on aerodynamic derivatives[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(1): 77-85. doi: 10.13700/j.bh.1001-5965.2019.0188(in Chinese)
Citation: ZHANG Qing, YE Zhengyin. Longitudinal stability analysis for X-37B like trans-atmospheric orbital test vehicle based on aerodynamic derivatives[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(1): 77-85. doi: 10.13700/j.bh.1001-5965.2019.0188(in Chinese)

基于气动导数的类X-37B飞行器纵向稳定性分析

doi: 10.13700/j.bh.1001-5965.2019.0188
基金项目: 

国家“863”计划 2014AA7060201

国家自然科学基金 11732013

陕西省自然科学基础研究计划 2019JM-290

详细信息
    作者简介:

    张庆  男, 博士, 讲师。主要研究方向:微型飞行器气动布局设计、超声速机翼优化设计

    叶正寅  男, 博士, 教授, 博士生导师。主要研究方向:飞行器气动弹性力学、非定常空气动力学

    通讯作者:

    叶正寅,E-mail:yezy@nwpu.edu.cn

  • 中图分类号: V212.12

Longitudinal stability analysis for X-37B like trans-atmospheric orbital test vehicle based on aerodynamic derivatives

Funds: 

National High-tech Research and Development Program of China 2014AA7060201

National Natural Science Foundation of China 11732013

Shaanxi Provincial Research Foundation for Basic Research on Natural Science, China 2019JM-290

More Information
  • 摘要:

    为了定量地研究跨大气层轨道飞行器在不同飞行条件下俯仰方向的动态特性,在Etkin气动力模型的基础上,详细研究了飞行马赫数、减缩频率、振动幅值、平均迎角等因素对此类飞行器纵向动态特性的影响规律。研究结果表明,平均迎角和飞行马赫数决定了流场的基本特性,所以对气动导数的影响很大;而减缩频率和振动幅值决定了非定常扰动的强弱,影响非定常气动力的大小,决定非定常迟滞效应的强弱。对类似X-37B的跨大气层轨道飞行器来说,平均迎角越大,机身后方背风区的涡流作用越强,纵向稳定性越强。在亚声速范围内,随着飞行马赫数增加,纵向稳定性增强,在超声速范围内,随着飞行马赫数增大,纵向稳定性减弱。振动幅值大小虽然影响了流场的形态,但对气动导数的数值大小没有明显影响。振动频率对动态特性的影响也不明显。希望研究结果可为中国未来类似飞行器的研究和发展提供相应的参考和技术储备。

     

  • 图 1  钝锥的几何外形和计算采用的混合网格

    Figure 1.  Blunted cone's geometric profile and hybrid mesh for computation

    图 2  俯仰阻尼随迎角的变化曲线

    Figure 2.  Variation curves of damping in pitching motion with angle of attack

    图 3  跨大气层轨道飞行器的几何外形和计算采用的混合网格

    Figure 3.  Tran-atmospheric orbiter's geometric profile and hybrid mesh for computation

    图 4  不同平均迎角时的俯仰力矩系数迟滞曲线

    Figure 4.  Hysteresis curves of pitching moment coefficient at various average angle of attack

    图 5  不同平均迎角时的俯仰组合气动导数变化曲线

    Figure 5.  Combined pitching aerodynamic derivative variation curves at various average angle of attack

    图 6  不同振动幅值时的俯仰力矩系数迟滞曲线

    Figure 6.  Hysteresis curves of pitching moment coefficient at various oscillation amplitude

    图 7  不同振动幅值时的俯仰组合气动导数变化曲线

    Figure 7.  Combined pitching aerodynamic derivative variation curves at various oscillation amplitude

    图 8  不同飞行马赫数时的俯仰力矩系数迟滞曲线

    Figure 8.  Hysteresis curves of pitching moment coefficient at various Mach number in flight

    图 9  不同飞行马赫数时的俯仰组合气动导数变化曲线

    Figure 9.  Combined pitching aerodynamic derivative variation curves at various Mach number in flight

    图 10  不同振动频率时俯仰力矩系数迟滞曲线

    Figure 10.  Hysteresis curves of pitching moment coefficient at various oscillation frequency

    图 11  不同振动频率时的俯仰组合气动导数变化曲线

    Figure 11.  Combined dynamic derivative variation curve at various oscillation frequency

  • [1] 张鲁民.航天飞机空气动力学分析[M].北京:国防工业出版社, 2009.

    ZHANG L M.Aerodynamics analysis of space shuttle[M].Beijing:National Defence Industry Press, 2009(in Chinese).
    [2] 蔡国飙, 徐大军.高超声速飞行器技术[M].北京:科学出版社, 2012.

    CAI G B, XU D J.Hypersonic vehicle technology[M].Beijing:Science Press, 2012(in Chinese).
    [3] CHAUDHARY A, NGUYEN V, TRAN H, et al.Dynamics and stability and control characteristics of the X-37: AIAA-2001-4383[R].Reston: AIAA, 2001.
    [4] GRANTZ A.X-37B orbital test vehicle and derivatives: AIAA-2011-7315[R].Reston: AIAA, 2011.
    [5] 孙宗祥, 唐志共, 陈喜兰, 等.X-37B的发展现状及空气动力技术综述[J].试验流体力学, 2015, 29(1):1-14. http://d.old.wanfangdata.com.cn/Periodical/ltlxsyycl201501001

    SUN Z X, TANG Z G, CHEN X L, et al.Review of the state-of-art and aerodynamic technology of X-37B[J].Journal of Experiments in Fluid Mechanics, 2015, 29(1):1-14(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/ltlxsyycl201501001
    [6] 张庆.高速再入飞行器动力学问题研究[D].西安: 西北工业大学, 2018.

    ZHANG Q.Research on flight dynamics of high-velocity reentry vehicles[D].Xi'an: Northwestern Polytechnical University, 2018(in Chinese).
    [7] 中国科学院.新型飞行器中的关键力学问题[M].北京:科学出版社, 2018.

    Chinese Academy of Sciences.Key mechanical problems in new types of aircraft[M].Beijing:Science Press, 2018(in Chinese).
    [8] 杨勇, 张辉, 郑宏涛.有翼高超声速再入飞行器气动设计难点问题[J].航空学报, 2015, 36(1):49-57. http://d.old.wanfangdata.com.cn/Periodical/hkxb201501006

    YANG Y, ZHANG H, ZHENG H T.Difficulties in aerodynamic design problems of the winged hypersonic reentry vehicle[J].Acta Aeronautica et Astronautica Sinica, 2015, 36(1):49-57(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/hkxb201501006
    [9] 叶友达.高超声速空气动力学研究进展与趋势[J].科学通报, 2015, 60(12):1095-1103. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb201512007

    YE Y D.Advances and prospects in hypersonic aerodynamics[J].Chinese Science Bulletin, 2015, 60(12):1095-1103(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb201512007
    [10] 叶友达.高空高速飞行器气动特性研究[J].力学进展, 2009, 39(4):387-397. doi: 10.3321/j.issn:1000-0992.2009.04.002

    YE Y D.Studies on aerodynamic characteristics of high velocity vehicle flying at high altitude[J].Advances in Mechanics, 2009, 39(4):387-397(in Chinese). doi: 10.3321/j.issn:1000-0992.2009.04.002
    [11] 庄逢甘, 赵梦熊.航天飞机的空气动力学问题[J].流体力学试验与测量, 1987, 1(4):1-8. http://d.old.wanfangdata.com.cn/Conference/130006

    ZHUANG F G, ZHAO M X.Aerodynamical problems of space shuttle[J].Experiments and Measurements in Fluid Dynamics, 1987, 1(4):1-8(in Chinese). http://d.old.wanfangdata.com.cn/Conference/130006
    [12] 蔡巧言, 杜涛, 朱广生.新型高超声速飞行器的气动设计技术探讨[J].宇航学报, 2009, 30(6):2086-2091. doi: 10.3873/j.issn.1000-1328.2009.06.006

    CAI Q Y, DU T, ZHU G S.The aerodynamic design technology for new type hypersonic vehicle[J].Journal of Astronautics, 2009, 30(6):2086-2091(in Chinese). doi: 10.3873/j.issn.1000-1328.2009.06.006
    [13] 蒋跃文.基于广义网格的CFD方法及其应用[D].西安: 西北工业大学, 2012.

    JIANG Y W.Numerical solution of Navier-Stokes equations on generalized mesh and its applications[D].Xi'an: Northwestern Polytechnical University, 2012(in Chinese).
    [14] EAST R A, HUTT G R.Comparison of predictions and experimental data for hypersonic pitching motion stability[J].Journal of Spacecraft and Rockets, 1988, 25(3):225-233. doi: 10.2514/3.25975
    [15] WELSH C J, WINCHENBACH G L, MADAGAN A N.Free-flight investigation of the aerodynamic characteristics of a cone at high mach numbers[J].AIAA Journal, 1970, 8(2):294-300. doi: 10.2514/3.5659
    [16] BERTIN J J.Hypersonic aerothermodynamics[M].Reston:AIAA, 1994.
    [17] 黄达, 李志强, 吴根兴.大振幅非定常试验数据表达与数学模型研究[J].空气动力学学报, 1999, 17(1):68-72. doi: 10.3969/j.issn.0258-1825.1999.01.010

    HUANG D, LI Z Q, WU G X.Study of data expression and mathematical modelling for unsteady experiment of a model pitching in large amplitude[J].Acta Aerodynamica Sinica, 1999, 17(1):68-72(in Chinese). doi: 10.3969/j.issn.0258-1825.1999.01.010
    [18] 刘绪, 刘伟, 柴振霞, 等.飞行器动态稳定性参数计算方法研究进展[J].航空学报, 2016, 37(8):2348-2369. http://d.old.wanfangdata.com.cn/Periodical/hkxb201608003

    LIU X, LIU W, CHAI Z X, et al.Research progress of numerical method of dynamic stability derivatives of aircraft[J].Acta Aeronautica et Astronautica Sinica, 2016, 37(8):2348-2369(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/hkxb201608003
    [19] LIU X, LIU W, ZHAO Y.Navier-Stokes predictions of dynamic stability derivatives for air-breathing hypersonic vehicle[J].Acta Astronautica, 2016, 118:262-285. doi: 10.1016/j.actaastro.2015.10.015
    [20] BRYAN G H, WILLIAMS W E.The longitudinal stability of aerial gliders[J].Proceedings of the Royal Society of London, 1904, 73:100-116. doi: 10.1098/rspl.1904.0017
    [21] ETKIN B, REID L D.Dynamics of flight:Stability and control[M].New York:Wiley, 1996.
    [22] 张婉鑫, 朱纪洪.大迎角非定常气动参数辨识研究[J].清华大学学报(自然科学版), 2017, 57(7):673-679. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qhdxxb201707001

    ZHANG W X, ZHU J H.Unsteady aerodynamic identification of aircraft at high angles of attack[J].Journal of Tsinghua University(Science & Technology), 2017, 57(7):673-679(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qhdxxb201707001
    [23] 黄达.飞行器大振幅运动非定常空气动力特性研究[D].南京: 南京航空航天大学, 2007. http://cdmd.cnki.com.cn/article/cdmd-10287-2007193997.htm

    HUANG D.Unsteady aerodynamic characteristics for the aircraft oscillation in large amplitude[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2007(in Chinese). http://cdmd.cnki.com.cn/article/cdmd-10287-2007193997.htm
    [24] 袁先旭, 陈琦, 谢昱飞, 等.动导数数值预测中的相关问题[J].航空学报, 2016, 37(8):2385-2394. http://d.old.wanfangdata.com.cn/Periodical/hkxb201608005

    YUAN X X, CHEN Q, XIE Y F, et al.Problem in numerical prediction of dynamic stability derivatives[J].Acta Aeronautica et Astronautica Sinica, 2016, 37(8):2385-2394(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/hkxb201608005
  • 加载中
图(11)
计量
  • 文章访问数:  1036
  • HTML全文浏览量:  176
  • PDF下载量:  322
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-28
  • 录用日期:  2019-08-30
  • 网络出版日期:  2020-01-20

目录

    /

    返回文章
    返回
    常见问答