Longitudinal stability analysis for X-37B like trans-atmospheric orbital test vehicle based on aerodynamic derivatives
-
摘要:
为了定量地研究跨大气层轨道飞行器在不同飞行条件下俯仰方向的动态特性,在Etkin气动力模型的基础上,详细研究了飞行马赫数、减缩频率、振动幅值、平均迎角等因素对此类飞行器纵向动态特性的影响规律。研究结果表明,平均迎角和飞行马赫数决定了流场的基本特性,所以对气动导数的影响很大;而减缩频率和振动幅值决定了非定常扰动的强弱,影响非定常气动力的大小,决定非定常迟滞效应的强弱。对类似X-37B的跨大气层轨道飞行器来说,平均迎角越大,机身后方背风区的涡流作用越强,纵向稳定性越强。在亚声速范围内,随着飞行马赫数增加,纵向稳定性增强,在超声速范围内,随着飞行马赫数增大,纵向稳定性减弱。振动幅值大小虽然影响了流场的形态,但对气动导数的数值大小没有明显影响。振动频率对动态特性的影响也不明显。希望研究结果可为中国未来类似飞行器的研究和发展提供相应的参考和技术储备。
Abstract:In order to quantitatively examine the dynamic characteristics in pitching direction of the tans-atmospheric orbiter under different flight conditions, on the basis of the Etkin aerodynamic model, the effects of Mach number, reduced frequency, oscillation amplitude, and average angle of attack on longitudinal dynamic performance of the orbiter were studied in detail. The results show that the average angle of attack and the Mach number determine the basic characteristics of the flow filed, so they have a great effect on the aerodynamic derivatives. The reduced frequency and oscillation amplitude determine the strength of the unsteady disturbance and that of the unsteady hysteresis effect, so they have a great effect on the unsteady aerodynamic forces. For X-37B like trans-atmospheric orbiter, with the increase of the average angle of attack, the effect of the vortical structure at the leeward side of the afterbody is larger and the longitudinal stability is increased. In the subsonic range, as the Mach number increases, the stability increases, and in the supersonic range, as the Mach number increases, the stability decreases. Although the amplitude has some effects on the flow field, it has no significant effect on the value of the aerodynamic derivative. The influence of oscillation frequency on dynamic characteristics is also not obvious. And we hope that these conclusions would provide some technical guidelines and reference for the future research and development of similar vehicle in China.
-
-
[1] 张鲁民.航天飞机空气动力学分析[M].北京:国防工业出版社, 2009.ZHANG L M.Aerodynamics analysis of space shuttle[M].Beijing:National Defence Industry Press, 2009(in Chinese). [2] 蔡国飙, 徐大军.高超声速飞行器技术[M].北京:科学出版社, 2012.CAI G B, XU D J.Hypersonic vehicle technology[M].Beijing:Science Press, 2012(in Chinese). [3] CHAUDHARY A, NGUYEN V, TRAN H, et al.Dynamics and stability and control characteristics of the X-37: AIAA-2001-4383[R].Reston: AIAA, 2001. [4] GRANTZ A.X-37B orbital test vehicle and derivatives: AIAA-2011-7315[R].Reston: AIAA, 2011. [5] 孙宗祥, 唐志共, 陈喜兰, 等.X-37B的发展现状及空气动力技术综述[J].试验流体力学, 2015, 29(1):1-14. http://d.old.wanfangdata.com.cn/Periodical/ltlxsyycl201501001SUN Z X, TANG Z G, CHEN X L, et al.Review of the state-of-art and aerodynamic technology of X-37B[J].Journal of Experiments in Fluid Mechanics, 2015, 29(1):1-14(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/ltlxsyycl201501001 [6] 张庆.高速再入飞行器动力学问题研究[D].西安: 西北工业大学, 2018.ZHANG Q.Research on flight dynamics of high-velocity reentry vehicles[D].Xi'an: Northwestern Polytechnical University, 2018(in Chinese). [7] 中国科学院.新型飞行器中的关键力学问题[M].北京:科学出版社, 2018.Chinese Academy of Sciences.Key mechanical problems in new types of aircraft[M].Beijing:Science Press, 2018(in Chinese). [8] 杨勇, 张辉, 郑宏涛.有翼高超声速再入飞行器气动设计难点问题[J].航空学报, 2015, 36(1):49-57. http://d.old.wanfangdata.com.cn/Periodical/hkxb201501006YANG Y, ZHANG H, ZHENG H T.Difficulties in aerodynamic design problems of the winged hypersonic reentry vehicle[J].Acta Aeronautica et Astronautica Sinica, 2015, 36(1):49-57(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/hkxb201501006 [9] 叶友达.高超声速空气动力学研究进展与趋势[J].科学通报, 2015, 60(12):1095-1103. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb201512007YE Y D.Advances and prospects in hypersonic aerodynamics[J].Chinese Science Bulletin, 2015, 60(12):1095-1103(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb201512007 [10] 叶友达.高空高速飞行器气动特性研究[J].力学进展, 2009, 39(4):387-397. doi: 10.3321/j.issn:1000-0992.2009.04.002YE Y D.Studies on aerodynamic characteristics of high velocity vehicle flying at high altitude[J].Advances in Mechanics, 2009, 39(4):387-397(in Chinese). doi: 10.3321/j.issn:1000-0992.2009.04.002 [11] 庄逢甘, 赵梦熊.航天飞机的空气动力学问题[J].流体力学试验与测量, 1987, 1(4):1-8. http://d.old.wanfangdata.com.cn/Conference/130006ZHUANG F G, ZHAO M X.Aerodynamical problems of space shuttle[J].Experiments and Measurements in Fluid Dynamics, 1987, 1(4):1-8(in Chinese). http://d.old.wanfangdata.com.cn/Conference/130006 [12] 蔡巧言, 杜涛, 朱广生.新型高超声速飞行器的气动设计技术探讨[J].宇航学报, 2009, 30(6):2086-2091. doi: 10.3873/j.issn.1000-1328.2009.06.006CAI Q Y, DU T, ZHU G S.The aerodynamic design technology for new type hypersonic vehicle[J].Journal of Astronautics, 2009, 30(6):2086-2091(in Chinese). doi: 10.3873/j.issn.1000-1328.2009.06.006 [13] 蒋跃文.基于广义网格的CFD方法及其应用[D].西安: 西北工业大学, 2012.JIANG Y W.Numerical solution of Navier-Stokes equations on generalized mesh and its applications[D].Xi'an: Northwestern Polytechnical University, 2012(in Chinese). [14] EAST R A, HUTT G R.Comparison of predictions and experimental data for hypersonic pitching motion stability[J].Journal of Spacecraft and Rockets, 1988, 25(3):225-233. doi: 10.2514/3.25975 [15] WELSH C J, WINCHENBACH G L, MADAGAN A N.Free-flight investigation of the aerodynamic characteristics of a cone at high mach numbers[J].AIAA Journal, 1970, 8(2):294-300. doi: 10.2514/3.5659 [16] BERTIN J J.Hypersonic aerothermodynamics[M].Reston:AIAA, 1994. [17] 黄达, 李志强, 吴根兴.大振幅非定常试验数据表达与数学模型研究[J].空气动力学学报, 1999, 17(1):68-72. doi: 10.3969/j.issn.0258-1825.1999.01.010HUANG D, LI Z Q, WU G X.Study of data expression and mathematical modelling for unsteady experiment of a model pitching in large amplitude[J].Acta Aerodynamica Sinica, 1999, 17(1):68-72(in Chinese). doi: 10.3969/j.issn.0258-1825.1999.01.010 [18] 刘绪, 刘伟, 柴振霞, 等.飞行器动态稳定性参数计算方法研究进展[J].航空学报, 2016, 37(8):2348-2369. http://d.old.wanfangdata.com.cn/Periodical/hkxb201608003LIU X, LIU W, CHAI Z X, et al.Research progress of numerical method of dynamic stability derivatives of aircraft[J].Acta Aeronautica et Astronautica Sinica, 2016, 37(8):2348-2369(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/hkxb201608003 [19] LIU X, LIU W, ZHAO Y.Navier-Stokes predictions of dynamic stability derivatives for air-breathing hypersonic vehicle[J].Acta Astronautica, 2016, 118:262-285. doi: 10.1016/j.actaastro.2015.10.015 [20] BRYAN G H, WILLIAMS W E.The longitudinal stability of aerial gliders[J].Proceedings of the Royal Society of London, 1904, 73:100-116. doi: 10.1098/rspl.1904.0017 [21] ETKIN B, REID L D.Dynamics of flight:Stability and control[M].New York:Wiley, 1996. [22] 张婉鑫, 朱纪洪.大迎角非定常气动参数辨识研究[J].清华大学学报(自然科学版), 2017, 57(7):673-679. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qhdxxb201707001ZHANG W X, ZHU J H.Unsteady aerodynamic identification of aircraft at high angles of attack[J].Journal of Tsinghua University(Science & Technology), 2017, 57(7):673-679(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qhdxxb201707001 [23] 黄达.飞行器大振幅运动非定常空气动力特性研究[D].南京: 南京航空航天大学, 2007. http://cdmd.cnki.com.cn/article/cdmd-10287-2007193997.htmHUANG D.Unsteady aerodynamic characteristics for the aircraft oscillation in large amplitude[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2007(in Chinese). http://cdmd.cnki.com.cn/article/cdmd-10287-2007193997.htm [24] 袁先旭, 陈琦, 谢昱飞, 等.动导数数值预测中的相关问题[J].航空学报, 2016, 37(8):2385-2394. http://d.old.wanfangdata.com.cn/Periodical/hkxb201608005YUAN X X, CHEN Q, XIE Y F, et al.Problem in numerical prediction of dynamic stability derivatives[J].Acta Aeronautica et Astronautica Sinica, 2016, 37(8):2385-2394(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/hkxb201608005