留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

复合材料层压板低速冲击行为及剩余拉伸强度

管清宇 冯剑飞 夏品奇 吴光辉

管清宇, 冯剑飞, 夏品奇, 等 . 复合材料层压板低速冲击行为及剩余拉伸强度[J]. 北京航空航天大学学报, 2021, 47(6): 1220-1232. doi: 10.13700/j.bh.1001-5965.2020.0132
引用本文: 管清宇, 冯剑飞, 夏品奇, 等 . 复合材料层压板低速冲击行为及剩余拉伸强度[J]. 北京航空航天大学学报, 2021, 47(6): 1220-1232. doi: 10.13700/j.bh.1001-5965.2020.0132
GUAN Qingyu, FENG Jianfei, XIA Pinqi, et al. Low-velocity impact behavior and residual tensile strength of composite laminates[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(6): 1220-1232. doi: 10.13700/j.bh.1001-5965.2020.0132(in Chinese)
Citation: GUAN Qingyu, FENG Jianfei, XIA Pinqi, et al. Low-velocity impact behavior and residual tensile strength of composite laminates[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(6): 1220-1232. doi: 10.13700/j.bh.1001-5965.2020.0132(in Chinese)

复合材料层压板低速冲击行为及剩余拉伸强度

doi: 10.13700/j.bh.1001-5965.2020.0132
详细信息
    通讯作者:

    夏品奇, E-mail: xiapq@nuaa.edu.cn

  • 中图分类号: TB332

Low-velocity impact behavior and residual tensile strength of composite laminates

More Information
  • 摘要:

    通过实验研究了复合材料层压板的低速冲击行为和剩余拉伸强度。首先,通过冲击实验研究了冲头类型和铺层形式对层压板冲击响应的影响,并通过凹坑深度、损伤投影面积、冲击力和冲击能量转化等对冲击损伤特性进行评估。其次,通过准静态拉伸实验调查了层压板的冲击后拉伸响应和剩余拉伸强度。最后,分析了冲头类型和铺层形式对层压板冲击行为和剩余拉伸强度的影响机理。结果表明:冲头类型对层压板冲击损伤的影响与冲击接触面投影面积和凹坑深度的函数关系密切相关;在较高的冲击能量下,条刃形冲头是造成损伤的关键冲击威胁,而立方角形冲头造成的损伤相对不严重;铺层形式对层压板的冲击损伤阻抗性能和拉伸断裂形貌有明显的影响。

     

  • 图 1  试件尺寸

    Figure 1.  Dimensions of test specimen

    图 2  冲击试件夹持

    Figure 2.  Fixture of impact test specimen

    图 3  冲头

    Figure 3.  Impactors

    图 4  凹坑深度测量方法

    Figure 4.  Methods for measuring dent depth

    图 5  超声C扫二维图像

    Figure 5.  Two-dimensional image of ultrasonic C scan

    图 6  试件损伤

    Figure 6.  Specimen damage

    图 7  不同冲头类型对应的冲击接触面投影面积和凹坑深度的函数关系

    Figure 7.  Function relationship of projection area of impact contact surface with dent depth corresponding to different impactor types

    图 8  5种冲头对应的冲击接触面投影面积与凹坑深度的关系

    Figure 8.  Relationship of projection area of impact contact surface with dent depth corresponding to five impactors

    图 9  不同冲头的冲击力-时间曲线

    Figure 9.  Impact force-time curves of different impactors

    图 10  不同冲头对应的试件吸收能量-时间曲线

    Figure 10.  Specimen absorbed energy-time curves of different impactors

    图 11  试件典型拉伸断裂形貌

    Figure 11.  Typical tensile fracture morphology of test specimens

    图 12  不同冲头条件下的拉伸应力-位移曲线

    Figure 12.  Tensile stress-displacement curves under different impactor conditions

    表  1  试件铺层

    Table  1.   Layup of test specimens

    代码 铺层顺序 名义厚度/mm
    L1 [45/-45/90/45/-45/45/-45/0/45/-45]S 3.740
    L2 [45/0/-45/0/90/0/45/0/-45/0]S 3.740
    注:s表示铺层对称。
    下载: 导出CSV

    表  2  实验安排

    Table  2.   Test arrangement

    铺层代码 冲头代码 冲头描述 冲击能量/J 备注
    L1 N/A N/A N/A 拉伸实验
    H12.7 半球形冲头,Ф=12.7 mm 35, 50, 60 冲击后拉伸实验
    H16 半球形冲头,Ф=16 mm 35, 50, 60 冲击后拉伸实验
    H25.4 半球形冲头,Ф=25.4 mm 35, 50, 60 冲击后拉伸实验
    L2 Strip 条刃形冲头 35, 50, 60 冲击后拉伸实验
    Corner 立方角形冲头 35, 50, 60 冲击后拉伸实验
    H16 半球形冲头,Ф=16 mm 35, 50, 60 冲击后拉伸实验
    注:N/A表示不适用。
    下载: 导出CSV

    表  3  冲击实验结果汇总

    Table  3.   Summary of impact test results

    铺层代码 冲头代码 凹坑深度/mm 损伤投影面积/mm2
    35 J 50 J 60 J 35 J 50 J 60 J
    H12.7 1.038 2.110 穿透 1 629 2 285 2 969
    L1 H16 0.379 1.274 2.454 1 232 1 985 2 639
    H25.4 0.246 0.434 0.861 972 1 806 2 165
    Strip 0.207 2.584 穿透 2 000 2 754 3 021
    L2 Corner 1.940 2.117 2.530 1 046 1 696 1 961
    H16 0.363 1.051 1.636 1 196 2 050 2 723
    下载: 导出CSV

    表  4  拉伸实验结果汇总

    Table  4.   Summary of tensile test results

    铺层代码 冲头代码 剩余拉伸强度/MPa
    35 J 50 J 60 J
    H12.7 357 355 337
    L1 H16 404 372 357
    H25.4 459 399 367
    Strip 427 305 286
    L2 Corner 388 369 355
    H16 1 021 928 824
    下载: 导出CSV
  • [1] 杜善义. 先进复合材料与航空航天[J]. 复合材料学报, 2007, 24(1): 1-12. doi: 10.3321/j.issn:1000-3851.2007.01.001

    DU S Y. Advanced composite materials and aerospace engineering[J]. Acta Materiae Compositae Sinica, 2007, 24(1): 1-12(in Chinese). doi: 10.3321/j.issn:1000-3851.2007.01.001
    [2] 杜善义, 关志东. 我国大型客机先进复合材料技术应对策略思考[J]. 复合材料学报, 2008, 25(1): 1-10. doi: 10.3321/j.issn:1000-3851.2008.01.001

    DU S Y, GUAN Z D. Strategic considerations for development of advanced composite technology for large commercial aircraft in China[J]. Acta Materiae Compositae Sinica, 2008, 25(1): 1-10(in Chinese). doi: 10.3321/j.issn:1000-3851.2008.01.001
    [3] LIU H B, FALZON B G, TAN W. Experimental and numerical studies on the impact response of damage-tolerant hybrid unidirectional/woven carbon-fibre reinforced composite laminates[J]. Composites Part B: Engineering, 2018, 136: 101-118. doi: 10.1016/j.compositesb.2017.10.016
    [4] 林智育, 许希武. 含冲击损伤复合材料加筋层板压缩剩余强度[J]. 航空学报, 2009, 30(1): 56-61. doi: 10.3321/j.issn:1000-6893.2009.01.008

    LIN Z Y, XU X W. Residual compressive strength of stiffened composite laminates with impact damage[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(1): 56-61(in Chinese). doi: 10.3321/j.issn:1000-6893.2009.01.008
    [5] AHN S S, HONG S W, KOO J M, et al. Evaluation of compressive residual strength in composite material under impact damage[J]. Transactions of the Korean Society of Mechanical Engineers, 2013, 37(4): 503-509. doi: 10.3795/KSME-A.2013.37.4.503
    [6] ANDREWA J J, SRINIVASANA S M, AROCKIARAJAN A. Parameters influencing the impact response of fiber-reinforced polymer matrix composite materials: A critical review[J]. Composite Structures, 2019, 224(9): 1-26. http://www.sciencedirect.com/science/article/pii/S0263822318343575
    [7] CMH-17 Committee. Composite materials handbook. Vol 3: Polymer matrix composites materials usage, design, and analysis[M]. Detroit: SAE International, 2012: 2-33.
    [8] DELANEY M P, FUNG S Y K, KIM H. Dent depth visibility versus delamination damage for impact of composite panels by tips of varying radius[J]. Journal of Composite Materials, 2018, 52(19): 2691-2705. doi: 10.1177/0021998317752502
    [9] MITREVSKI T, MARSHALL I H, THOMSON R, et al. The influence of impactor shape on the damage to composite laminates[J]. Composite Structures, 2006, 76: 116-122. doi: 10.1016/j.compstruct.2006.06.017
    [10] MITREVSKI T, MARSHALL I H, THOMSON R, et al. Low-velocity impacts on preloaded GFRP specimens with various impactor shapes[J]. Composite Structures, 2006, 76: 209-217. doi: 10.1016/j.compstruct.2006.06.033
    [11] YU Z F, GAO S J. Increase of contact radius due to deflection in low velocity impact of composite laminates and prediction of delamination threshold load[J]. Composite Structures, 2016, 147: 286-293. doi: 10.1016/j.compstruct.2016.03.029
    [12] AMARO A M, REIS P N B, MAGALHAES A G, et al. The effect of the impactor diameter and boundary conditions on low velocity impact composites behavior[J]. Applied Mechanics and Materials, 2007, 7: 217-222. http://www.scientific.net/AMM.7-8.217
    [13] BULENT M I, BINNUR G K, MEHMET E D, et al. Impactor diameter effect on low velocity impact response of woven glass epoxy composite plates[J]. Composites Part B, 2013, 50: 325-332. doi: 10.1016/j.compositesb.2013.02.024
    [14] ALI K, MEHMET S, HALIL M E, et al. Effect of impactor shapes on the low velocity impact damage of sandwich composite plate: Experimental study and modelling[J]. Composites Part B, 2016, 86: 143-151. doi: 10.1016/j.compositesb.2015.09.032
    [15] MILI F, NECIB B. The effect of stacking sequence on the impact-induced damage in cross-ply E-glass/epoxy composite plates[J]. Archive of Applied Mechanics, 2009, 79(11): 1019-1031. doi: 10.1007/s00419-008-0272-z
    [16] CZANOCKI P. Delamination resistance of laminates with various stacking sequences against low velocity impacts[J]. Solid State Phenom, 2015, 240: 143-148. doi: 10.4028/www.scientific.net/SSP.240.143
    [17] ZHOU J W, LIAO B B, SHI Y Y, et al. Low-velocity impact behavior and residual tensile strength of CFRP laminates[J]. Composites Part B, 2019, 161: 300-313. doi: 10.1016/j.compositesb.2018.10.090
    [18] 邹健, 程小全, 陈浩, 等. 二维织物增强层合板高速冲击后拉伸性能模拟[J]. 北京航空航天大学学报, 2008, 34(6): 638-642. https://bhxb.buaa.edu.cn/CN/Y2008/V34/I06/638

    ZOU J, CHENG X Q, CHEN H, et al. Tensile properties simulation of two-dimensional woven reinforced composite laminates after high velocity impact[J]. Journal of Beijing University of Aeronautics and Astronautics, 2008, 34(6): 638-642(in Chinese). https://bhxb.buaa.edu.cn/CN/Y2008/V34/I06/638
    [19] 程小全, 康炘蒙, 邹健, 等. 平面编织复合材料层合板低速冲击后的拉伸性能[J]. 复合材料学报, 2008, 25(5): 163-168. doi: 10.3321/j.issn:1000-3851.2008.05.027

    CHENG X Q, KANG X M, ZHOU J, et al. Tensile properties of plane woven composite laminates after low velocity impact[J]. Acta Materiae Compositae Sinica, 2008, 25(5): 163-168(in Chinese). doi: 10.3321/j.issn:1000-3851.2008.05.027
    [20] 屈天骄, 郑锡涛, 范献银, 等. 复合材料层合板低速冲击损伤影响因素分析[J]. 航空材料学报, 2011, 31(6): 81-86. https://www.cnki.com.cn/Article/CJFDTOTAL-HKCB201106015.htm

    QU T J, ZHENG X T, FAN X Y. Exploration of several influence factors of low-velocity impact damage on composite laminates[J]. Journal of Aeronautical Materials, 2011, 31(6): 81-86(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKCB201106015.htm
    [21] AKTAS M, ATAS C, ICTEN B M, et al. An experimental investigation of the impact response of composite laminates[J]. Composite Structure, 2009, 87: 307-313. doi: 10.1016/j.compstruct.2008.02.003
    [22] EVCI C, GULGEC M. An experimental investigation on the impact response of composite materials[J]. International Journal of Impact Engineering, 2012, 43: 40-51. doi: 10.1016/j.ijimpeng.2011.11.009
    [23] LI X K, LIU P F. Experimental analysis of low-velocity impact behaviors of carbon fiber composite laminates[J]. Journal of Failure Analysis and Prevention, 2017, 17(6): 1126-1130. doi: 10.1007/s11668-017-0350-z
    [24] XU Z, YANG F, GUAN Z W, CANTWELL W J. An experimental and numerical study on scaling effects in the low velocity impact response of CFRP laminates[J]. Composite Structure, 2016, 154: 69-78. doi: 10.1016/j.compstruct.2016.07.029
    [25] BALASUBRAMANI V, BOOPATHY S R. Prediction of residual tensile strength of laminated composite plates after low velocity impact[J]. ARPN Journal of Engineering and Applied Sciences, 2014, 9: 320-325. http://www.researchgate.net/publication/286017624_Prediction_of_residual_tensile_strength_of_laminated_composite_plates_after_low_velocity_impact
    [26] KHAN H A, NIGAR M, CHAUDHRY I A. Tensile behavior of unidirectional carbon reinforced composites for aerospace structures under varying strain rates[J]. Applied Mechanics and Materials, 2015, 798: 357-361. doi: 10.4028/www.scientific.net/AMM.798.357
    [27] MOSALLAM A, SLENK J, KREINER J. Assessment of residual tensile strength of carbon/epoxy composites subjected to low-energy impact[J]. Journal of Aerospace Engineering, 2008, 21(4): 249-258. doi: 10.1061/(ASCE)0893-1321(2008)21:4(249)
    [28] ASTM Committee. Standard test method for measuring the damage resistance of a fiber-reinforced polymer matrix composite to a drop-weight impact event: ASTM D7136/D7136M-15[S]. West Conshohocken: ASTM International, 2015.
    [29] ASTM Committee. Standard test method for compressive residual strength properties of damaged polymer matrix composite plates: ASTM D3039/D3039M-14[S]. West Conshohocken: ASTM International, 2012.
    [30] DANIEL W, HYONNY K. Effect of impactor radius on low-velocity impact damage of glass/epoxy composites[J]. Journal of Composite Materials, 2012, 46(25): 3137-3149. doi: 10.1177/0021998312436991
    [31] HITCHEN S, KEMP R. The effect of stacking sequence on impact damage in a carbon fiber/epoxy composite[J]. Composites, 1995, 26(3): 207-214. doi: 10.1016/0010-4361(95)91384-H
    [32] LI T, YANG Y, YU X, et al. Micro-structure response and fracture mechanisms of C/SiC composites subjected to low-velocity ballistic penetration[J]. Ceramics International, 2017, 43: 6910-6918. http://www.sciencedirect.com/science/article/pii/S0272884217303024
    [33] LI T, MO J, YU X, et al. Mechanical behavior of C/SiC composites under hypervelocity impact at different temperatures: Micro-structures, damage and mechanisms[J]. Composites Part A: Applied Science and Manufacturing, 2016, 88: 19-26. doi: 10.1016/j.compositesa.2016.05.015
  • 加载中
图(12) / 表(4)
计量
  • 文章访问数:  550
  • HTML全文浏览量:  147
  • PDF下载量:  180
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-08
  • 录用日期:  2020-05-08
  • 网络出版日期:  2021-06-20

目录

    /

    返回文章
    返回
    常见问答