Guidance law design based on stochastic maneuvering model and impact point predictions
-
摘要:
针对自旋弹体低成本制导律设计问题,提出了一种基于落点预测的新型制导律设计方法。采用随机机动模型和自适应卡尔曼滤波器估计弹体的飞行状态,并解析求解弹体落点预测值,根据落点预测值与目标的偏差生成制导指令。该制导律不依赖于弹体气动参数和弹体运动方程的在线数值求解,避免了常规基于落点预测的制导律所带来的在线计算成本。根据自旋火箭弹的非线性数学模型,通过数值仿真检验了所提制导律在标称参数条件和参数受扰条件下的性能。通过与比例制导律进行制导性能对比,结果表明:所提制导律的制导性能在绝大多数情况下优于比例制导律。
Abstract:A novel guidance law design method based on impact point predictions is proposed in this paper. A stochastic maneuvering model and the adaptive Kalman filter are used to estimate the projectile states, and predicted impact points are solved analytically. Guidance commands are generated based on errors between predicted impact points and the target. The proposed guidance law is free from projectile aerodynamics data and real-time numerical solutions to projectile equations of motion, which are commonly required by the existing impact point based guidance laws, and thus the on-line computation cost is avoided. Numerical simulations based on the nonlinear model of a spinning artillery rocket are conducted to examine the performance of the proposed guidance law under nominal and perturbed parameter conditions. Performance comparison between the proposed guidance law and the proportional navigation guidance law is also conducted. The results show that the proposed guidance law has better guidance performance than the proportional navigation guidance law in most scenarios.
-
表 1 火箭弹仿真参数
Table 1. Parameters for artillery rocket simulation
参数 数值 初始速度/(m·s-1) 26.7 初始高度/m 40.0 初始自旋速率/(rad·s-1) 5.8 发射仰角/(°) 50.0 发射方位角/(°) 0 GPS更新频率/Hz 1.0 滚转角更新频率/Hz 50.0 表 2 受扰参数的误差
Table 2. Errors of perturbed parameters
受扰参数误差 3σ值 初始速度误差/(m·s-1) 3.5 初始滚转角速率误差/(rad·s-1) 2.0 初始俯仰角速率误差/(rad·s-1) 2.0 初始偏航角速率误差/(rad·s-1) 2.0 发射仰角误差/(°) 0.5 发射方位角误差/(°) 0.5 GPS测量误差/m 4.5 滚转角测量误差/(°) 5.0 -
[1] ZARCHAN P. Tactical and strategic missile guidance[M]. 6th ed. Reston: AIAA, 2012: 13-15. [2] YANUSHEVSKY R. Modern missile guidance[M]. Boca Raton: CRC Press, 2008: 10-19. [3] HU X, YANG S, XIONG F, et al. Stability of spinning missile with homing proportional guidance law[J]. Aerospace Science and Technology, 2017, 71: 546-555. doi: 10.1016/j.ast.2017.10.007 [4] PAMADI K. Aerodynamic considerations for open-loop control of a statically unstable mortar projectile[J]. Journal of Spacecraft and Rockets, 2014, 51(5): 1576-1586. doi: 10.2514/1.A32691 [5] COOPER G, FRESCONI F, COSTELLO M. Flight stability of an asymmetric projectile with activating canards[J]. Journal of Spacecraft and Rockets, 2012, 49(1): 130-135. doi: 10.2514/1.A32022 [6] OHLMEYER E, FRAYSSE J, PAMADI K.Guidance, navigation and control without gyros: A gun-launched munition concept[C]//Proceedings of AIAA Guidance, Navigation, and Control Conference and Exhibit.Reston: AIAA, 2002: 1-14. [7] FRESCONI F, CELMINS I, FAIRFAX L.Optimal parameters for maneuverability of affordable precision munitions[C]//Proceedings of 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition.Reston: AIAA, 2012: 1-22. [8] THEODOULIS S, GASSMANN V, WERNERT P, et al. Guidance and control design for a class of spin-stabilized fin-controlled projectiles[J]. Journal of Guidance, Control, and Dynamics, 2013, 36(2): 517-531. doi: 10.2514/1.56520 [9] FRESCONI F. Guidance and control of a projectile with reduced sensor and actuator requirements[J]. Journal of Guidance, Control, and Dynamics, 2011, 34(6): 860-867. doi: 10.2514/1.53584 [10] PAMADI K, OHLMEYER E.Evaluation of two guidance laws for controlling the impact flight path angle of a naval gun launched spinning projectile[C]//Proceedings of AIAA Guidance, Navigation, and Control Conference and Exhibit.Reston: AIAA, 2006: 1-11. [11] PAMADI K, OHLMEYER E, PEPITONE T.Assessment of a GPS guided spinning projectile using an accelerometer-only IMU[C]//Proceedings of AIAA Guidance, Navigation, and Control Conference and Exhibit.Reston: AIAA, 2004. [12] FRESCONI F, COOPER G, COSTELLO M. Practical assessment of real-time impact point estimators for smart weapons[J]. Journal of Aerospace Engineering, 2011, 24(1): 1-11. doi: 10.1061/(ASCE)AS.1943-5525.0000044 [13] 普承恩, 王良明, 傅健. 基于EKF落点预测的二维弹道修正弹制导方法[J]. 兵器装备工程学报, 2018, 39(6): 52-57. https://www.cnki.com.cn/Article/CJFDTOTAL-CUXI201806011.htmPU C E, WANG L M, FU J. A guidance method for two dimensional trajectory correction projectile based on impact point prediction of EKF[J]. Journal of Ordnance Equipment Engineering, 2018, 39(6): 52-57(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-CUXI201806011.htm [14] 杨泗智, 龚春林, 郝波, 等. 基于落点预测的高旋火箭弹弹道修正算法[J]. 航空学报, 2020, 41(2): 323421. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB202002027.htmYANG S Z, GONG C L, HAO B, et al. Ballistic trajectory correction algorithms of high-spin rocket based on impact point prediction[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(2): 323421(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB202002027.htm [15] 钟扬威, 王良明, 国晨, 等. 旋转稳定二维弹道修正弹落点预测制导方法研究[J]. 火炮发射与控制学报, 2018, 39(3): 11-16. https://www.cnki.com.cn/Article/CJFDTOTAL-HPFS201803003.htmZHONG Y W, WANG L M, GUO C, et al. Study of an impact point prediction guidance method for spin-stabilized 2D trajectory correction projectiles[J]. Journal of Gun Launch & Control, 2018, 39(3): 11-16(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HPFS201803003.htm [16] 何子达, 王亚飞, 王海川. 基于扩展卡尔曼滤波的二维弹道修正弹制导算法研究[J]. 舰船电子对抗, 2020, 43(1): 86-90. https://www.cnki.com.cn/Article/CJFDTOTAL-JCDZ202001017.htmHE Z D, WANG Y F, WANG H C. Research into guidance algorithm of 2-D trajectory correction projectile based on extended Kalman filter[J]. Shipboard Electronic Countermeasure, 2020, 43(1): 86-90(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JCDZ202001017.htm [17] 赵江, 周锐, 张超. 考虑禁飞区规避的预测校正再入制导方法[J]. 北京航空航天大学学报, 2015, 41(5): 864-870. doi: 10.13700/j.bh.1001-5965.2014.0488ZHAO J, ZHOU R, ZHANG C. Predictor-corrector reentry guidance satisfying no-fly zone constraints[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(5): 864-870(in Chinese). doi: 10.13700/j.bh.1001-5965.2014.0488 [18] 王青, 莫华东, 吴振东, 等. 基于能量的高超声速飞行器再入混合制导方法[J]. 北京航空航天大学学报, 2014, 40(5): 579-584. doi: 10.13700/j.bh.1001-5965.2013.0383WANG Q, MO H D, WU Z D, et al. Energy-based hybrid reentry guidance for hypersonic vehicles[J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(5): 579-584(in Chinese). doi: 10.13700/j.bh.1001-5965.2013.0383 [19] 梁子璇, 任章. 基于在线气动参数修正的预测制导方法[J]. 北京航空航天大学学报, 2013, 39(7): 853-857. https://bhxb.buaa.edu.cn/CN/Y2013/V39/I7/853LIANG Z X, REN Z. Predictive reentry guidance with aerodynamic parameter online correction[J]. Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(7): 853-857(in Chinese). https://bhxb.buaa.edu.cn/CN/Y2013/V39/I7/853 [20] 王俊波, 曲鑫, 任章. 基于模糊逻辑的预测再入制导方法[J]. 北京航空航天大学学报, 2011, 37(1): 63-66. https://bhxb.buaa.edu.cn/CN/Y2011/V37/I1/63WANG J B, QU X, REN Z. Predictive guidance method for the reentry vehicles based on fuzzy logic[J]. Journal of Beijing University of Aeronautics and Astronautics, 2011, 37(1): 63-66(in Chinese). https://bhxb.buaa.edu.cn/CN/Y2011/V37/I1/63 [21] 周宏仁. 机动目标"当前"统计模型与自适应跟踪算法[J]. 航空学报, 1983, 4(1): 73-86. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB198301011.htmZHOU H R. A "current" statistical model and adaptive tracking algorithm for maneuvering targets[J]. Acta Aeronautica et Astronautica Sinica, 1983, 4(1): 73-86(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB198301011.htm [22] SINGER R. Estimating optimal tracking filter performance for manned maneuvering targets[J]. IEEE Transactions on Aerospace and Electronic Systems, 1970, AES-6(4): 473-483. doi: 10.1109/TAES.1970.310128