留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于随机机动模型和落点预测的制导律设计

杨庶

杨庶. 基于随机机动模型和落点预测的制导律设计[J]. 北京航空航天大学学报, 2021, 47(2): 255-261. doi: 10.13700/j.bh.1001-5965.2020.0202
引用本文: 杨庶. 基于随机机动模型和落点预测的制导律设计[J]. 北京航空航天大学学报, 2021, 47(2): 255-261. doi: 10.13700/j.bh.1001-5965.2020.0202
YANG Shu. Guidance law design based on stochastic maneuvering model and impact point predictions[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(2): 255-261. doi: 10.13700/j.bh.1001-5965.2020.0202(in Chinese)
Citation: YANG Shu. Guidance law design based on stochastic maneuvering model and impact point predictions[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(2): 255-261. doi: 10.13700/j.bh.1001-5965.2020.0202(in Chinese)

基于随机机动模型和落点预测的制导律设计

doi: 10.13700/j.bh.1001-5965.2020.0202
详细信息
    作者简介:

    杨庶  男, 博士, 副教授。主要研究方向: 飞行力学与飞行控制、导航、制导与控制

    通讯作者:

    杨庶. E-mail: syang@nwpu.edu.cn

  • 中图分类号: V412.4;TJ765.3

Guidance law design based on stochastic maneuvering model and impact point predictions

More Information
  • 摘要:

    针对自旋弹体低成本制导律设计问题,提出了一种基于落点预测的新型制导律设计方法。采用随机机动模型和自适应卡尔曼滤波器估计弹体的飞行状态,并解析求解弹体落点预测值,根据落点预测值与目标的偏差生成制导指令。该制导律不依赖于弹体气动参数和弹体运动方程的在线数值求解,避免了常规基于落点预测的制导律所带来的在线计算成本。根据自旋火箭弹的非线性数学模型,通过数值仿真检验了所提制导律在标称参数条件和参数受扰条件下的性能。通过与比例制导律进行制导性能对比,结果表明:所提制导律的制导性能在绝大多数情况下优于比例制导律。

     

  • 图 1  参考系定义

    Figure 1.  Definition of reference frames

    图 2  火箭弹构型

    Figure 2.  Configuration of an artillery rocket

    图 3  制导和非制导火箭弹轨迹对比

    Figure 3.  Trajectory comparison between guided and unguided artillery rockets

    图 4  制导火箭弹等效舵偏角

    Figure 4.  Equivalent canard deflections of guided artillery rocket

    图 5  制导火箭弹位置的估计误差

    Figure 5.  Estimation errors of guided artillery rocket locations

    图 6  制导火箭弹和非制导火箭弹落点分布

    Figure 6.  Impact point distributions of guided and unguided artillery rockets

    图 7  本文制导律与比例制导律的性能对比

    Figure 7.  Performance comparison between proposed guidance law and proportional navigation guidance law

    表  1  火箭弹仿真参数

    Table  1.   Parameters for artillery rocket simulation

    参数 数值
    初始速度/(m·s-1) 26.7
    初始高度/m 40.0
    初始自旋速率/(rad·s-1) 5.8
    发射仰角/(°) 50.0
    发射方位角/(°) 0
    GPS更新频率/Hz 1.0
    滚转角更新频率/Hz 50.0
    下载: 导出CSV

    表  2  受扰参数的误差

    Table  2.   Errors of perturbed parameters

    受扰参数误差 3σ
    初始速度误差/(m·s-1) 3.5
    初始滚转角速率误差/(rad·s-1) 2.0
    初始俯仰角速率误差/(rad·s-1) 2.0
    初始偏航角速率误差/(rad·s-1) 2.0
    发射仰角误差/(°) 0.5
    发射方位角误差/(°) 0.5
    GPS测量误差/m 4.5
    滚转角测量误差/(°) 5.0
    下载: 导出CSV
  • [1] ZARCHAN P. Tactical and strategic missile guidance[M]. 6th ed. Reston: AIAA, 2012: 13-15.
    [2] YANUSHEVSKY R. Modern missile guidance[M]. Boca Raton: CRC Press, 2008: 10-19.
    [3] HU X, YANG S, XIONG F, et al. Stability of spinning missile with homing proportional guidance law[J]. Aerospace Science and Technology, 2017, 71: 546-555. doi: 10.1016/j.ast.2017.10.007
    [4] PAMADI K. Aerodynamic considerations for open-loop control of a statically unstable mortar projectile[J]. Journal of Spacecraft and Rockets, 2014, 51(5): 1576-1586. doi: 10.2514/1.A32691
    [5] COOPER G, FRESCONI F, COSTELLO M. Flight stability of an asymmetric projectile with activating canards[J]. Journal of Spacecraft and Rockets, 2012, 49(1): 130-135. doi: 10.2514/1.A32022
    [6] OHLMEYER E, FRAYSSE J, PAMADI K.Guidance, navigation and control without gyros: A gun-launched munition concept[C]//Proceedings of AIAA Guidance, Navigation, and Control Conference and Exhibit.Reston: AIAA, 2002: 1-14.
    [7] FRESCONI F, CELMINS I, FAIRFAX L.Optimal parameters for maneuverability of affordable precision munitions[C]//Proceedings of 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition.Reston: AIAA, 2012: 1-22.
    [8] THEODOULIS S, GASSMANN V, WERNERT P, et al. Guidance and control design for a class of spin-stabilized fin-controlled projectiles[J]. Journal of Guidance, Control, and Dynamics, 2013, 36(2): 517-531. doi: 10.2514/1.56520
    [9] FRESCONI F. Guidance and control of a projectile with reduced sensor and actuator requirements[J]. Journal of Guidance, Control, and Dynamics, 2011, 34(6): 860-867. doi: 10.2514/1.53584
    [10] PAMADI K, OHLMEYER E.Evaluation of two guidance laws for controlling the impact flight path angle of a naval gun launched spinning projectile[C]//Proceedings of AIAA Guidance, Navigation, and Control Conference and Exhibit.Reston: AIAA, 2006: 1-11.
    [11] PAMADI K, OHLMEYER E, PEPITONE T.Assessment of a GPS guided spinning projectile using an accelerometer-only IMU[C]//Proceedings of AIAA Guidance, Navigation, and Control Conference and Exhibit.Reston: AIAA, 2004.
    [12] FRESCONI F, COOPER G, COSTELLO M. Practical assessment of real-time impact point estimators for smart weapons[J]. Journal of Aerospace Engineering, 2011, 24(1): 1-11. doi: 10.1061/(ASCE)AS.1943-5525.0000044
    [13] 普承恩, 王良明, 傅健. 基于EKF落点预测的二维弹道修正弹制导方法[J]. 兵器装备工程学报, 2018, 39(6): 52-57. https://www.cnki.com.cn/Article/CJFDTOTAL-CUXI201806011.htm

    PU C E, WANG L M, FU J. A guidance method for two dimensional trajectory correction projectile based on impact point prediction of EKF[J]. Journal of Ordnance Equipment Engineering, 2018, 39(6): 52-57(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-CUXI201806011.htm
    [14] 杨泗智, 龚春林, 郝波, 等. 基于落点预测的高旋火箭弹弹道修正算法[J]. 航空学报, 2020, 41(2): 323421. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB202002027.htm

    YANG S Z, GONG C L, HAO B, et al. Ballistic trajectory correction algorithms of high-spin rocket based on impact point prediction[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(2): 323421(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB202002027.htm
    [15] 钟扬威, 王良明, 国晨, 等. 旋转稳定二维弹道修正弹落点预测制导方法研究[J]. 火炮发射与控制学报, 2018, 39(3): 11-16. https://www.cnki.com.cn/Article/CJFDTOTAL-HPFS201803003.htm

    ZHONG Y W, WANG L M, GUO C, et al. Study of an impact point prediction guidance method for spin-stabilized 2D trajectory correction projectiles[J]. Journal of Gun Launch & Control, 2018, 39(3): 11-16(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HPFS201803003.htm
    [16] 何子达, 王亚飞, 王海川. 基于扩展卡尔曼滤波的二维弹道修正弹制导算法研究[J]. 舰船电子对抗, 2020, 43(1): 86-90. https://www.cnki.com.cn/Article/CJFDTOTAL-JCDZ202001017.htm

    HE Z D, WANG Y F, WANG H C. Research into guidance algorithm of 2-D trajectory correction projectile based on extended Kalman filter[J]. Shipboard Electronic Countermeasure, 2020, 43(1): 86-90(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JCDZ202001017.htm
    [17] 赵江, 周锐, 张超. 考虑禁飞区规避的预测校正再入制导方法[J]. 北京航空航天大学学报, 2015, 41(5): 864-870. doi: 10.13700/j.bh.1001-5965.2014.0488

    ZHAO J, ZHOU R, ZHANG C. Predictor-corrector reentry guidance satisfying no-fly zone constraints[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(5): 864-870(in Chinese). doi: 10.13700/j.bh.1001-5965.2014.0488
    [18] 王青, 莫华东, 吴振东, 等. 基于能量的高超声速飞行器再入混合制导方法[J]. 北京航空航天大学学报, 2014, 40(5): 579-584. doi: 10.13700/j.bh.1001-5965.2013.0383

    WANG Q, MO H D, WU Z D, et al. Energy-based hybrid reentry guidance for hypersonic vehicles[J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(5): 579-584(in Chinese). doi: 10.13700/j.bh.1001-5965.2013.0383
    [19] 梁子璇, 任章. 基于在线气动参数修正的预测制导方法[J]. 北京航空航天大学学报, 2013, 39(7): 853-857. https://bhxb.buaa.edu.cn/CN/Y2013/V39/I7/853

    LIANG Z X, REN Z. Predictive reentry guidance with aerodynamic parameter online correction[J]. Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(7): 853-857(in Chinese). https://bhxb.buaa.edu.cn/CN/Y2013/V39/I7/853
    [20] 王俊波, 曲鑫, 任章. 基于模糊逻辑的预测再入制导方法[J]. 北京航空航天大学学报, 2011, 37(1): 63-66. https://bhxb.buaa.edu.cn/CN/Y2011/V37/I1/63

    WANG J B, QU X, REN Z. Predictive guidance method for the reentry vehicles based on fuzzy logic[J]. Journal of Beijing University of Aeronautics and Astronautics, 2011, 37(1): 63-66(in Chinese). https://bhxb.buaa.edu.cn/CN/Y2011/V37/I1/63
    [21] 周宏仁. 机动目标"当前"统计模型与自适应跟踪算法[J]. 航空学报, 1983, 4(1): 73-86. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB198301011.htm

    ZHOU H R. A "current" statistical model and adaptive tracking algorithm for maneuvering targets[J]. Acta Aeronautica et Astronautica Sinica, 1983, 4(1): 73-86(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB198301011.htm
    [22] SINGER R. Estimating optimal tracking filter performance for manned maneuvering targets[J]. IEEE Transactions on Aerospace and Electronic Systems, 1970, AES-6(4): 473-483. doi: 10.1109/TAES.1970.310128
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  1007
  • HTML全文浏览量:  191
  • PDF下载量:  82
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-22
  • 录用日期:  2020-07-17
  • 网络出版日期:  2021-02-20

目录

    /

    返回文章
    返回
    常见问答