留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光滑时变约束转子动力特性分析

刘棣 李超 马艳红 洪杰

刘棣, 李超, 马艳红, 等 . 光滑时变约束转子动力特性分析[J]. 北京航空航天大学学报, 2021, 47(11): 2331-2343. doi: 10.13700/j.bh.1001-5965.2020.0384
引用本文: 刘棣, 李超, 马艳红, 等 . 光滑时变约束转子动力特性分析[J]. 北京航空航天大学学报, 2021, 47(11): 2331-2343. doi: 10.13700/j.bh.1001-5965.2020.0384
LIU Di, LI Chao, MA Yanhong, et al. Dynamic characteristics of smooth time-varying constrained rotor[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(11): 2331-2343. doi: 10.13700/j.bh.1001-5965.2020.0384(in Chinese)
Citation: LIU Di, LI Chao, MA Yanhong, et al. Dynamic characteristics of smooth time-varying constrained rotor[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(11): 2331-2343. doi: 10.13700/j.bh.1001-5965.2020.0384(in Chinese)

光滑时变约束转子动力特性分析

doi: 10.13700/j.bh.1001-5965.2020.0384
基金项目: 

国家科技重大专项 2007-I-0008-0009

详细信息
    通讯作者:

    洪杰, E-mail: hongjie@buaa.edu.cn

  • 中图分类号: V231.96

Dynamic characteristics of smooth time-varying constrained rotor

Funds: 

National Science and Technology Major Project 2007-I-0008-0009

More Information
  • 摘要:

    光滑时变约束是转静子碰摩所产生的一种力学效果,指静子与转子发生持续接触,静子对转子产生周期时变的约束作用,转子在该约束下的附加刚度曲线是一条光滑可导的函数。根据试验转子在光滑时变约束下的附加刚度曲线建立一种光滑时变约束模型,基于Hill行列式理论分析光滑时变约束转子的模态频率、稳定性及响应,为碰摩转子故障识别和稳定性分析提供一种分析途径。结果表明:光滑时变约束下转子具有频率耦合、多频、失稳特性。失稳转速区中,转子的幅值随时间逐渐增大,引起转子失稳的频率成分即为转子模态分析中特征值实部大于0的频率成分;非失稳转速区中,转子的频率成分主要为转速频率和波动频率构成的频率组合。

     

  • 图 1  碰摩转子系统试验器[17]

    Figure 1.  Rub-impact test device of rotor system[17]

    图 2  静子碰摩试验装置

    Figure 2.  Rub-impact test device of stator

    图 3  不同机匣刚度下约束刚度随时间变化

    Figure 3.  Constraint stiffness changing with time with different case stiffness

    图 4  非光滑时变刚度曲线

    Figure 4.  Non-smooth stiffness curves

    图 5  光滑时变刚度曲线

    Figure 5.  Smooth time-varying stiffness curve

    图 6  局部碰摩转子模型

    Figure 6.  Rotor model with local rub-impact

    图 7  摩擦系数对模态特性的影响

    Figure 7.  Influence of friction coefficient on modal characteristics

    图 8  波动刚度比对模态特性的影响

    Figure 8.  Influence of wave stiffness ratio on modal characteristics

    图 9  频率比对模态特性的影响

    Figure 9.  Influence of frequency ratio on modal characteristics

    图 10  平均刚度比对模态特性的影响

    Figure 10.  Influence of average stiffness ratio on modal characteristics

    图 11  阻尼对模态特性的影响

    Figure 11.  Influence of damping on modal characteristics

    图 12  失稳区转子响应特性

    Figure 12.  Response characteristics of rotor in unstable region

    图 13  非失稳区转子响应特性

    Figure 13.  Response characteristics of rotor in stable region

    图 14  不同频率比下转子系统响应

    Figure 14.  Rotor system response with different frequency ratios

    图 15  Jeffcott转子碰摩的物理模型

    Figure 15.  Physical rub-impact model of Jeffcott rotor

    图 16  经典Jeffcott转子碰摩模型响应特性

    Figure 16.  Response characteristics of classic Jeffcott rubbing rotor model

    图 17  光滑时变约束转子系统模态频率

    Figure 17.  Modal frequency of smooth time-varying constrained rotor system

    图 18  经典Jeffcott转子系统ω=0.38转速响应特性

    Figure 18.  Response characteristics of classic Jeffcott rubbing rotor model with rotational speed ω=0.38

    图 19  经典Jeffcott转子系统ω=0.8转速响应特性

    Figure 19.  Speed response characteristics of classic Jeffcott rubbing rotor model with ω=0.8

  • [1] CHU F, LU W. Stiffening effect of the rotor during the rotor-to-stator rub in a rotating machine[J]. Journal of Sound and Vibration, 2007, 308(3): 758-766. http://www.onacademic.com/detail/journal_1000034094284710_78a3.html
    [2] TAI X, MA H, LIU F, et al. Stability and steady-state response analysis of a single rub-impact rotor system[J]. Archive of Applied Mechanics, 2015, 85(1): 133-148. doi: 10.1007/s00419-014-0906-2
    [3] EHRICH, FREDRIC F. Observations of nonlinear phenomena in rotordynamics[J]. Journal of System Design & Dynamics, 2008, 2(3): 641-651. http://www.onacademic.com/detail/journal_1000039717379710_d720.html
    [4] EHRICH F. Observations of subcritical superharmonic and chaotic response in rotordynamics[J]. Journal of Vibration and Acoustics, 1992, 114(1): 93-100. doi: 10.1115/1.2930240
    [5] GONSALVES D H, NEILSON R D, BARR A D S. A study of the response of a discontinuously nonlinear rotor system[J]. Nonlinear Dynamics, 1995, 7(4): 451-470. doi: 10.1007/BF00121108
    [6] BLACK H F. Interaction of a whirling rotor with a vibrating stator across a clearance annulus[J]. Journal of Mechanical Engineering Science, 1968, 10(1): 1-12. doi: 10.1243/JMES_JOUR_1968_010_003_02
    [7] 张华彪, 陈予恕. 非线性转子的反向全周碰摩响应[J]. 振动与冲击, 2013, 32(10): 84-90. doi: 10.3969/j.issn.1000-3835.2013.10.016

    ZHANG H B, CHEN Y S. Reverse full annular rub of a nonlinear rotor system[J]. Journal of Vibration and Shock, 2013, 32(10): 84-90(in Chinese). doi: 10.3969/j.issn.1000-3835.2013.10.016
    [8] JIANG J, ULBRICH H. The physical reason and the analytical condition for the onset of dry whip in rotor-to-stator contact systems[J]. Journal of Vibration and Acoustics, 2005, 127(6): 594-603. doi: 10.1115/1.1888592
    [9] MUSZYNSKA A. Rotor-to-stationary element rub-related vibration phenomena in rotating machinery-Literature suryey[J]. The Shock and Vibration Digest, 1989, 21(3): 3-11. doi: 10.1177/058310248902100303
    [10] CHOI Y S. Dynamics of rotor rub in annular clearance with experimental evaluation[J]. Journal of Mechanical Science and Technology, 1994, 8(4): 404-413. http://www.onacademic.com/detail/journal_1000034415908310_e760.html
    [11] ZILLI A, WILLIAMS R J, EWINS D J. Nonlinear dynamics of a simplified model of an overhung rotor subjected to intermittent annular rubs[J]. Journal of Engineering for Gas Turbines and Power, 2015, 137(6): 065001. doi: 10.1115/1.4028844
    [12] SINHA S K. Non-linear dynamic response of a rotating radial Timoshenko beam with periodic pulse loading at the free-end[J]. International Journal of Non-Linear Mechanics, 2005, 40(1): 113-149. doi: 10.1016/j.ijnonlinmec.2004.05.019
    [13] DAI X, ZHANG X, JIN X. The partial and full rubbing of a flywheel rotor-bearing-stop system[J]. International Journal of Mechanical Sciences, 2001, 43(2): 505-519. doi: 10.1016/S0020-7403(99)00121-6
    [14] WANG C, ZHANG D, MA Y, et al. Theoretical and experimental investigation on the sudden unbalance and rub-impact in rotor system caused by blade off[J]. Mechanical Systems and Signal Processing, 2016, 76: 111-135. http://smartsearch.nstl.gov.cn/paper_detail.html?id=213bf01925e5c0f980cb248bac6d409e
    [15] ABUZAID M A, ELESHAKY M E, ZEDAN M G. Effect of partial rotor-to-stator rub on shaft vibration[J]. Journal of Mechanical Science and Technology, 2009, 23(1): 170-182. doi: 10.1007/s12206-008-0717-x
    [16] GOLDMAN P, MUSZYNSKA A. Chaotic behavior of rotor/stator systems with rubs[J]. Journal of Engineering for Gas Turbines and Power, 1994, 116(3): 692-701. doi: 10.1115/1.2906875
    [17] HONG J, PINGCHAO Y U, ZHANG D, et al. Modal characteristics analysis for a flexible rotor with non-smooth constraint due to intermittent rub-impact[J]. Chinese Journal of Aeronautics, 2018, 31(3): 498-513. doi: 10.1016/j.cja.2018.01.003
    [18] JIANG J. The analytical solution and the existence condition of dry friction backward whirl in rotor-to-stator contact systems[J]. Journal of Vibration and Acoustics, 2007, 129(2): 260-264. doi: 10.1115/1.2345677
  • 加载中
图(19)
计量
  • 文章访问数:  319
  • HTML全文浏览量:  77
  • PDF下载量:  235
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-04
  • 录用日期:  2020-09-30
  • 网络出版日期:  2021-11-20

目录

    /

    返回文章
    返回
    常见问答