留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Agent与元胞自动机的无人机集群混合式控制

肖宗豪 张鹏 迟文升 刘畅

肖宗豪, 张鹏, 迟文升, 等 . 基于Agent与元胞自动机的无人机集群混合式控制[J]. 北京航空航天大学学报, 2021, 47(11): 2344-2359. doi: 10.13700/j.bh.1001-5965.2020.0385
引用本文: 肖宗豪, 张鹏, 迟文升, 等 . 基于Agent与元胞自动机的无人机集群混合式控制[J]. 北京航空航天大学学报, 2021, 47(11): 2344-2359. doi: 10.13700/j.bh.1001-5965.2020.0385
XIAO Zonghao, ZHANG Peng, CHI Wensheng, et al. Hybrid control for UAV swarms based on Agent and cellular automata[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(11): 2344-2359. doi: 10.13700/j.bh.1001-5965.2020.0385(in Chinese)
Citation: XIAO Zonghao, ZHANG Peng, CHI Wensheng, et al. Hybrid control for UAV swarms based on Agent and cellular automata[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(11): 2344-2359. doi: 10.13700/j.bh.1001-5965.2020.0385(in Chinese)

基于Agent与元胞自动机的无人机集群混合式控制

doi: 10.13700/j.bh.1001-5965.2020.0385
基金项目: 

国家自然科学基金 61703422

国家自然科学基金 61903378

详细信息
    通讯作者:

    张鹏, E-mail: peng1439@163.com

  • 中图分类号: V249;V279

Hybrid control for UAV swarms based on Agent and cellular automata

Funds: 

National Natural Science Foundation of China 61703422

National Natural Science Foundation of China 61903378

More Information
  • 摘要:

    高效有序的集群控制方式是集群顺利完成作战任务的前提。针对无人机集群控制问题,结合集中式与分布式2种控制方式,提出基于Agent与元胞自动机的集群混合式控制。从无人机集群作战流程出发构建了无人机集群控制体系框架、通信拓扑结构及集群控制规则,将集群个体由上至下分为中心长机、小组长机、个体无人机3个层次,高层级对低层级采用自上而下的集中式控制,同层级采用自下而上的分布式控制。在此基础上,利用Agent模型的层次性与元胞自动机模型的同质性,设计了基于Agent与元胞自动机的集群混合式控制模型,实现2种控制方式有效结合,元胞自动机模型实现集群基本的聚合、分离、速度一致规则,Agent模型实现不同层级个体间的协同交互规则。在编队集结与保持任务背景下,对分布式、集中式与混合式3种控制进行对比仿真,结果表明:基于混合式控制的集群在编队可控性、跟随性、一致性以及降低通信负载等方面具有明显优势,验证了混合式集群控制方法的有效性。

     

  • 图 1  元胞自动机结构示意图

    Figure 1.  Schematic diagram of cellular automata structure

    图 2  Agent结构模型

    Figure 2.  Agent structure model

    图 3  OODA作战环

    Figure 3.  OODA operations ring

    图 4  无人机集群作战流程

    Figure 4.  Flowchart of UAV swarms operations

    图 5  无人机集群混合式控制框架结构

    Figure 5.  Hybrid control framework for UAV swarms

    图 6  无人机集群时变混合式通信拓扑结构

    Figure 6.  Time-varying hybrid communication topology of UAV swarms

    图 7  集群任务分解

    Figure 7.  Swarms task decomposition

    图 8  集群个体自由度变化

    Figure 8.  Change of individual degree of freedom in swarms

    图 9  Agent与元胞自动机混合控制结构

    Figure 9.  Hybrid control structure of Agent and cellular automata

    图 10  Moore型邻域元胞

    Figure 10.  Moore neighborhood cell

    图 11  平滑力函数图像

    Figure 11.  Smooth force function image

    图 12  集群编队状态

    Figure 12.  Swarms formation status

    图 13  三种控制方式集群速度变化曲线

    Figure 13.  Swarms speed variation curves of three control modes

    图 14  三种控制方式编队速度一致性偏差

    Figure 14.  Formation speed consistency deviation of three control modes

    图 15  三种控制方式的集群离散度变化曲线

    Figure 15.  Variation curves of swarms dispersion in three control modes

    图 16  三种控制方式集群通信次数变化曲线

    Figure 16.  Swarms communication frequency variation curves of three control modes

    图 17  三种控制方式单节点最大通信次数

    Figure 17.  Maximum number of single node communications in three control modes

    表  1  仿真参数

    Table  1.   Simulation parameters

    参数 数值 参数 数值
    Vmax/(m·s-1) 100 ω3 1
    umax/(m·s-2) 7 cm1, mMg 0.1
    R0/m 50 cm2, mMg 0.2
    γ 0.1 cm3, mMg 0.1
    h 0.7 cm4, mMg 0.2
    a 1 λ1 1
    b 2 λ2 1
    c1 0.1 λ3 1
    c2 0.2 ci1, iUa 0.1
    θi/(°) 45 ci2, iUa 0.2
    κ 6 ci3, iUa 0.1
    ϕ/(°) 150 ci4, iUa 0.2
    β1 1 b1 0.1
    β2 1 b2 0.1
    co1 0.1 b3 0.1
    co2 0.2 b4 0.1
    ω1 1 b5 0.1
    ω2 1 Vomin/(m·s-1) 60
    下载: 导出CSV
  • [1] DUAN H B, YANG Q, DENG Y M, et al. Unmanned aerial systems coordinate target allocation based on wolf behaviors[J]. Science China Information Sciences, 2019, 62(1): 205-207. http://www.onacademic.com/detail/journal_1000041577964699_c520.html
    [2] FAELDEN G E U, VICERRA R R P, GAN L L A, et al. Implementation of swarm social foraging behavior in unmanned aerial vehicle (UAV) quadrotor swarm[J]. Journal of Advanced Computational Intelligence and Intelligent Informatics, 2018, 21(2): 197-204. http://smartsearch.nstl.gov.cn/paper_detail.html?id=cc99c6416c80f8cfcaa4e4b0aab22959
    [3] 郑繁繁, 张立冬, 赵浦媛, 等. 启发式无人机蜂群自组网协议及仿真[J]. 指挥与控制学报, 2020, 6(1): 50-59. doi: 10.3969/j.issn.2096-0204.2020.01.0050

    ZHENG F F, ZHANG L D, ZHAO P Y, et al. The protocol and simulation of swarm self-organizing network for heuristic UAV[J]. Journal of Command and Control, 2020, 6(1): 50-59(in Chinese). doi: 10.3969/j.issn.2096-0204.2020.01.0050
    [4] 王祥科, 刘志宏, 丛一睿, 等. 小型固定翼无人机集群综述和未来发展[J]. 航空学报, 2020, 41(4): 20-45. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB202004002.htm

    WANG X K, LIU Z H, CONG Y R, et al. Miniature fixed-wing UAV swarms: Review and outlook[J]. Acta Aerophenica Sinica, 2020, 41(4): 20-45(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB202004002.htm
    [5] LIU W, GAO Z J. A distributed flocking control strategy for UAV groups[J]. Computer Communications, 2020, 153: 95-101. doi: 10.1016/j.comcom.2020.01.076
    [6] FU X W, PAN J, WANG H X, et al. A formation maintenance and reconstruction method of UAV swarm based on distributed control[J]. Aerospace Science and Technology, 2020, 104: 105981. doi: 10.1016/j.ast.2020.105981
    [7] LIU H, MENG Q Y, PENG F C, et al. Heterogeneous formation control of multiple UAVs with limited-input leader via reinforcement learning[J]. Neurocomputing, 2020, 412: 63-71. doi: 10.1016/j.neucom.2020.06.040
    [8] ROLDAO V, CUNHA R, CABECINHAS D, et al. A leader-following trajectory generator with application to quadrotor formation flight[J]. Robotics and Autonomous Systems, 2014, 62(10): 1597-1609. doi: 10.1016/j.robot.2014.05.002
    [9] WILSON D B, GOKTOGAN A H, SUKKARIEH S. Vision-aided guidance and navigation for close formation flight[J]. Journal of Field Robotics, 2016, 33(5): 661-686. doi: 10.1002/rob.21637
    [10] HUO M Z, DUAN H B, YANG Q, et al. Live-fly experimentation for pigeon-inspired obstacle avoidance of quadrotor unmanned aerial vehicles[J]. Science China Information Sciences, 2019, 62(5): 052201. doi: 10.1007/s11432-018-9576-x
    [11] 霍梦真, 魏晨, 于月平, 等. 基于鸽群智能行为的大规模无人机集群聚类优化算法[J]. 中国科学: 技术科学, 2020, 50(4): 475-482. https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK202004009.htm

    HUO M Z, WEI C, YU Y P, et al. A large-scale UAV clustering optimization algorithm based on pigeon swarm intelligent behavior[J]. Scientia Sinica: Technical Science, 2020, 50(4): 475-482(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK202004009.htm
    [12] 杨之元, 段海滨, 范彦铭. 基于莱维飞行鸽群优化的仿雁群无人机编队控制器设计[J]. 中国科学: 技术科学, 2018, 48(2): 161-169. doi: 10.3969/j.issn.0253-2778.2018.02.011

    YANG Z Y, DUAN H B, FAN Y M. Formation controller design based on levi-flight pigeon swarm optimization[J]. Scientia Sinica: Technical Science, 2018, 48(2): 161-169(in Chinese). doi: 10.3969/j.issn.0253-2778.2018.02.011
    [13] QIU H X, WEI C, DOU R, et al. Fully autonomous flying: From collective motion in bird flocks to unmanned aerial vehicle autonomous swarms[J]. Science China Information Sciences, 2015, 58(12): 211-213. http://www.cnki.com.cn/Article/CJFDTotal-JFXG201512016.htm
    [14] JIA X, HU L H, FENG F J, et al. Robust H consensus control for linear discrete-time swarm systems with parameter uncertainties and time-varying delays[J]. International Journal of Aerospace Engineering, 2019, 2019: 1-16.
    [15] ZHEN Z Y, TAO G, XU Y, et al. Multivariable adaptive control based consensus flight control system for UAVs formation[J]. Aerospace Science and Technology, 2019, 93: 105336. doi: 10.1016/j.ast.2019.105336
    [16] 闫党辉, 章卫国, 陈航, 等. 具有时延和干扰约束的多无人机滑模一致性编队控制研究[J]. 西北工业大学学报, 2020, 38(2): 420-426. doi: 10.3969/j.issn.1000-2758.2020.02.024

    YAN D H, ZHANG W G, CHEN H, et al. Research on sliding mode consistent formation control of multi-uav with delay and interference constraints[J]. Journal of Northwest University of Technology, 2020, 38(2): 420-426(in Chinese). doi: 10.3969/j.issn.1000-2758.2020.02.024
    [17] DENNUNZIO A, FORMENTI E, GRINBERG D, et al. Dynamical behavior of additive cellular automata over finite abelian groups[J]. Theoretical Computer Science, 2020, 843: 45-56. doi: 10.1016/j.tcs.2020.06.021
    [18] JETTO K, TAHIRI Z, BENYOUSSEF A, et al. Cognitive anticipation cellular automata model: An attempt to understand the relation between the traffic states and rear-end collisions[J]. Accident Analysis and Prevention, 2020, 142: 105507. doi: 10.1016/j.aap.2020.105507
    [19] ZHANG S L, SHEN Y F, ZHAO Z Y. Design and implementation of a three-lane CA traffic flow model on ternary optical computer[J]. Optics Communications, 2020, 470: 125750. doi: 10.1016/j.optcom.2020.125750
    [20] NAJM A A, IBRAHEEM I K, AZAR A T, et al. Genetic optimization-based consensus control of multi-agent 6-DoF UAV system[J]. Sensors, 2020, 20(12): 3576. doi: 10.3390/s20123576
    [21] WU G F, WAN K F, GAO X G, et al. Placement of unmanned aerial vehicles as communication relays in two-tiered multi-agent system: Clustering based methods[J]. Journal of Systems Engineering and Electronics, 2020, 31(2): 231-242. doi: 10.23919/JSEE.2020.000001
    [22] HUANG S N, TEO S H R, LIU W Q, et al. Agent model for multi-UAV control via protocol designs[J]. International Journal of Intelligent Computing and Cybernetics, 2017, 10(4): 412-429. doi: 10.1108/IJICC-02-2017-0010
    [23] 张阳, 王艳正, 司光亚. 集群式电子战无人机的OODA作战环分析与建模[J]. 火力与指挥控制, 2018, 43(8): 31-36. doi: 10.3969/j.issn.1002-0640.2018.08.007

    ZHANG Y, WANG Y Z, SI G Y. Analysis and modeling of OODA circle of electronic war fare group UAV[J]. Fire Control & Command Control, 2018, 43(8): 31-36(in Chinese). doi: 10.3969/j.issn.1002-0640.2018.08.007
    [24] REYNOLDS C W. Flocks, herds and schools: A distributed behavioral model[J]. ACM SIGGRAPH Computer Graphics, 1987, 21(4): 25-34. doi: 10.1145/37402.37406
    [25] 赵学军, 董玉浩, 袁修久, 等. 具有周期性双层优化结构的无人机集群航路规划模型[J]. 科技导报, 2019, 37(13): 53-58. https://www.cnki.com.cn/Article/CJFDTOTAL-KJDB201913009.htm

    ZHAO X J, DONG Y H, YUAN X J, et al. UAV cluster route planning model with periodic double-layer optimization structure[J]. Science and Technology Bulletin, 2019, 37(13): 53-58(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KJDB201913009.htm
    [26] REN W. Consensus based formation control strategies for multi-vehicle systems[C]//2006 American Control Conference. Piscataway: IEEE Press, 2006: 14-16.
  • 加载中
图(17) / 表(1)
计量
  • 文章访问数:  636
  • HTML全文浏览量:  184
  • PDF下载量:  93
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-04
  • 录用日期:  2020-09-04
  • 网络出版日期:  2021-11-20

目录

    /

    返回文章
    返回
    常见问答