留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于多元KELM的发动机状态在线预测模型

戴金玲 许爱强 于超 吴阳勇

戴金玲, 许爱强, 于超, 等 . 基于多元KELM的发动机状态在线预测模型[J]. 北京航空航天大学学报, 2021, 47(11): 2277-2286. doi: 10.13700/j.bh.1001-5965.2020.0389
引用本文: 戴金玲, 许爱强, 于超, 等 . 基于多元KELM的发动机状态在线预测模型[J]. 北京航空航天大学学报, 2021, 47(11): 2277-2286. doi: 10.13700/j.bh.1001-5965.2020.0389
DAI Jinling, XU Aiqiang, YU Chao, et al. Online prediction model of the state of engine based on multivariate KELM[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(11): 2277-2286. doi: 10.13700/j.bh.1001-5965.2020.0389(in Chinese)
Citation: DAI Jinling, XU Aiqiang, YU Chao, et al. Online prediction model of the state of engine based on multivariate KELM[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(11): 2277-2286. doi: 10.13700/j.bh.1001-5965.2020.0389(in Chinese)

基于多元KELM的发动机状态在线预测模型

doi: 10.13700/j.bh.1001-5965.2020.0389
详细信息
    通讯作者:

    许爱强, E-mail: 1159416532@qq.com

  • 中图分类号: V243;TP181

Online prediction model of the state of engine based on multivariate KELM

More Information
  • 摘要:

    针对当前飞机发动机状态预测过程中,不考虑相关变量状态变化,仅根据单变量历史时间序列对飞机发动机状态预测的问题,提出一种基于多元核极限学习机(KELM)的发动机状态在线预测模型。首先,通过多变量时间序列的相空间重构,将变量间的时间相关性转化为空间相关性;其次,通过研究KELM与核递归最小二乘法(KRLS)之间的关系,将KRLS扩展到在线稀疏KELM框架中;最后,使用近似线性依赖对样本进行稀疏化来控制网络结构的增长,最终实现多变量非平稳序列的在线预测。某型教练机的发动机飞行参数预测结果表明:满足在线预测要求的条件下,与KB-IELM、NOS-KELM、FF-OSKELM相比,模型KRLSELM将平均预测精度提高了90.61%、58.14%和25.77%,将预测稳定性提高了99.61%、75.03%和28.59%,具有更高的预测精度和稳定性;并且各方法均在多变量输入条件下获得最优的预测效果,验证了考虑多变量状态因素对单变量的在线预测具有重要意义。

     

  • 图 1  RLS结构

    Figure 1.  Structure of RLS

    图 2  Lorenz混沌时间序列

    Figure 2.  Lorenz chaotic time series

    图 3  Lorenz混沌时间序列预测曲线

    Figure 3.  Prediction curve of Lorenz chaotic time series

    图 4  Lorenz混沌时间序列预测误差

    Figure 4.  Prediction error of Lorenz chaotic time series

    图 5  Lorenz混沌时间序列训练样本数

    Figure 5.  Number of training samples for Lorenz chaotic time series learning

    图 6  Lorenz混沌时间序列学习曲线

    Figure 6.  Learning curve of Lorenz chaotic time series

    图 7  某教练机飞行参数样本曲线

    Figure 7.  Flight parameter sample curves of a trainer engine

    图 8  KRLSELM方法的飞行参数预测曲线

    Figure 8.  Flight parameter prediction curves by KRLSELM

    图 9  KRLSELM预测的APE

    Figure 9.  APE curves predicted by KRLSELM

    图 10  KRLSELM训练样本数

    Figure 10.  Training sample numbers of KRLSELM

    图 11  KRLSELM学习曲线

    Figure 11.  Learning curves of KRLSELM

    表  1  Lorenz混沌时间序列实验参数设置

    Table  1.   Experimental parameter setting for Lorenz chaotic time series

    方法 正则化因子/103 核参数σ/103 其他参数
    KB-IELM[11] 20 0.1
    NOS-KELM[18] 2 3 m=50, δ=10-2, η=0.8
    FF-OSKELM[19] 2 1 γ=0.999
    KRLSELM 2 100 δ=10-7
    注:ηrm分别为学习率、遗忘因子值、字典大小。
    下载: 导出CSV

    表  2  Lorenz混沌时间序列预测结果

    Table  2.   Results of Lorenz chaotic time series prediction

    方法 变量 训练时间/s 训练RMSE 测试时间/μs 测试RMSE MAPE MRPE
    KB-IELM x 28.122 0 0.008 4 15 500 0.015 8 0.077 1 0.004 4
    x, y 28.492 5 0.006 3 15 100 0.024 9 0.152 7 0.001 6
    x, y, z 28.119 5 0.006 8 19 900 0.056 9 0.342 0 0.004 2
    NOS-KELM x 3.816 6 0.214 5 71 974 0.212 8 0.581 4 0.186 3
    x, y 3.873 5 0.168 9 81 639 0.170 9 0.396 6 0.057 4
    x, y, z 4.244 0 0.228 3 89 808 0.244 4 0.648 3 0.057 3
    FF-OSKELM x 3.121 1 0.017 9 94 554 0.017 1 0.050 5 0.006 5
    x, y 3.120 8 0.011 4 99 473 0.015 0 0.104 7 0.005 1
    x, y, z 3.102 7 0.050 8 82 837 0.074 8 0.271 4 0.044 9
    KRLSELM x 1.561 5 0.159 9 56 622 0.144 5 0.603 1 0.035 5
    x, y 1.770 9 0.029 7 66 928 0.018 3 0.058 2 0.011 5
    x, y, z 1.881 3 0.014 0 90 021 0.011 0 0.031 9 0.008 7
    下载: 导出CSV

    表  3  飞行参数设置

    Table  3.   Experimental parameters setting for flight parameters prediction

    方法 正则化因
    子/103
    核参数
    σ/104
    其他参数
    KB-IELM 20 2
    NOS-KELM 20 5 m=50, δ=10-2, η=0.8
    FF-OSKELM 20 5 γ=0.999
    KRLSELM 20 1 δ=10-7
    下载: 导出CSV

    表  4  飞行参数预测仿真结果

    Table  4.   Simulation results of flight parameters prediction

    方法 测试指标 空间重构变量
    2 12 23 24 123 124 234 1234
    KB-IELM RMSE 5.320 1 4.056 2 5.051 2 4.957 3 3.735 4 4.310 9 4.445 6 4.072 6
    MAPE 16.89 86 12.752 9 15.936 5 16.264 8 13.150 6 14.097 6 15.497 0 12.832 9
    MRPE 0.064 9 0.044 7 0.065 1 0.057 1 0.041 0 0.049 1 0.055 2 0.045 7
    测试时间/μs 382.32 545.26 499.93 397.29 537.13 3 100 528.58 576.91
    NOS-KELM RMSE 3.167 4 0.669 0 1.372 6 1.648 4 1.156 3 0.968 5 2.704 0 1.660 5
    MAPE 5.856 5 1.999 1 6.246 4 6.883 2 4.380 5 2.847 8 5.446 8 5.099 2
    MRPE 0.036 9 0.006 5 0.010 6 0.012 8 0.010 0 0.009 0 0.033 2 0.018 4
    测试时间/μs 823.23 779.73 586.31 718.03 718.89 851.03 614.54 1 000
    FF-OSKELM RMSE 1.694 1 0.468 2 0.743 1 1.488 4 1.079 6 0.469 7 0.847 9 1.045 4
    MAPE 5.664 0 1.486 4 3.256 5 3.249 0 5.422 6 1.188 9 4.828 7 5.029 9
    MRPE 0.018 4 0.005 0 0.006 6 0.017 7 0.008 7 0.004 9 0.006 4 0.009 5
    测试时间/μs 471.27 447.32 498.92 502.35 377.19 544.65 441.09 595.62
    KRLSELM RMSE 1.063 8 0.403 4 0.861 2 1.268 7 0.682 2 0.401 2 0.744 3 0.676 5
    MAPE 2.875 8 1.573 0 5.070 9 3.592 9 3.932 7 1.393 9 4.281 2 3.886 2
    MRPE 0.012 1 0.004 3 0.006 0 0.014 3 0.005 2 0.004 2 0.005 7 0.005 4
    测试时间/μs 475.12 835.21 703.82 638.06 760.37 859.58 902.78 875.41
    下载: 导出CSV
  • [1] ZHEN T, QIAN C, BUSRA G, et al. Electric vehicle air conditioning system performance prediction based on artificial neural network[J]. Applied Thermal Engineering, 2015, 89: 101-114. doi: 10.1016/j.applthermaleng.2015.06.002
    [2] SAPANKEVYCH N, SANKAR R. Time series prediction using support vector machines: A survey[J]. IEEE Computational Intelligence Magazine, 2009, 4(2): 24-38. doi: 10.1109/MCI.2009.932254
    [3] ZHOU D, GAO F, GUAN X. Application of accurate online support vector regression in energy price forecast[C]//World Congress on Intelligent Control & Automation. Piscataway: IEEE Press, 2004: 1845-1849.
    [4] SHI Z, HAN M. Support vector echo-state machine for chaotic time-series prediction[J]. IEEE Transactions on Neural Networks, 2007, 18: 359-372. doi: 10.1109/TNN.2006.885113
    [5] PINO R, PARRENO J, GOMEZ A, et al. Forecasting next-day price of electricity in the Spanish energy market using artificial neural networks[J]. Engineering Applications of Artificial Intelligence, 2008, 21(1): 53-62. doi: 10.1016/j.engappai.2007.02.001
    [6] BAI Y, LI T. Robust fuzzy inference system for prediction of time series with outliers[C]//2012 IEEE International Conference on Fuzzy Theory and it's Applications(iFuzzY). Piscataway: IEEE Press, 2012.
    [7] HUANG G B, WANG D H, LAN Y. Extreme learning machines: A survey[J]. International Journal of Machine Learning and Cybernetics, 2011, 2(2): 107-122. doi: 10.1007/s13042-011-0019-y
    [8] HUANG G B, CHEN L, SIEW C K. Universal approximation using incremental constructive feedforward networks with random hidden nodes[J]. IEEE Transactions on Neural Networks, 2006, 17(4): 879-892. doi: 10.1109/TNN.2006.875977
    [9] HUANG G B, ZHU Q Y, SIEW C K. Extreme learning machine: Theory and applications[J]. Neurocomputing, 2006, 70(1-3): 489-501. doi: 10.1016/j.neucom.2005.12.126
    [10] HUANG G B, ZHOU H, DING X, et al. Extreme learning machine for regression and multiclass classification[J]. IEEE Transactions on Systems, Man and Cybernetics Part B, 2012, 42(2): 513-529. doi: 10.1109/TSMCB.2011.2168604
    [11] GUO L, HAO J H, LIU M. An incremental extreme learning machine for online sequential learning problems[J]. Neurocomputing, 2014, 128: 50-58. doi: 10.1016/j.neucom.2013.03.055
    [12] SCARDAPANE S, COMMINIELLO D, SCARPINITI M, et al. Online sequential extreme learning machine with kernels[J]. Neural Networks and Learning Systems, 2015, 26(9): 2214-2220. doi: 10.1109/TNNLS.2014.2382094
    [13] LIANG N Y, HUANG G B, SARATCHANDRAN P, et al. A fast and accurate online sequential learning algorithm for feedforward networks[J]. IEEE Transactions on Neural Networks, 2006, 17: 1411-1423. doi: 10.1109/TNN.2006.880583
    [14] ZHOU X R, LIU Z J, ZHU C X. Online regularized and kernelized extreme learning machines with forgetting mechanism[J]. Mathematical Problems in Engineering, 2014, 2014: 1-11. http://www.onacademic.com/detail/journal_1000038057511710_19ea.html
    [15] ZHOU X R, WANG G S. Cholesky factorization based online regularized and kernelized extreme learning machines with forgetting mechanism[J]. Neurocomputing, 2016, 174: 1147-1155. doi: 10.1016/j.neucom.2015.10.033
    [16] 张伟, 许爱强, 高明哲. 基于稀疏核增量超限学习机的机载设备在线状态预测[J]. 北京航空航天大学学报, 2017, 43(10): 2089-2098. doi: 10.13700/j.bh.1001-5965.2016.0802

    ZHANG W, XU A Q, GAO M Z. Online condition prediction of avionic devices based on sparse kernel incremental extreme learning machine[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(10): 2089-2098(in Chinese). doi: 10.13700/j.bh.1001-5965.2016.0802
    [17] 张伟, 许爱强, 高明哲. 一种基于积累一致性测量的在线状态预测算法[J]. 上海交通大学学报, 2017, 51(11): 1391-1398. https://www.cnki.com.cn/Article/CJFDTOTAL-SHJT201711016.htm

    ZHANG W, XU A Q, GAO M Z. An online condition prediction algorithm based on cumulative coherence measurement[J]. Journal of Shanghai Jiaotong University, 2017, 51(11): 1391-1398(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SHJT201711016.htm
    [18] ZHANG W, XU A, PING D, et al. An improved kernel-based incremental extreme learning machine with fixed budget for nonstationary time series prediction[J]. Neural Computing and Applications, 2017, 31(6): 1-16.
    [19] 朱敏, 许爱强, 陈强强, 等. 一种基于改进KELM的在线状态预测方法[J]. 北京航空航天大学学报, 2019, 45(7): 1370-1379. doi: 10.13700/j.bh.1001-5965.2018.0685

    ZHU M, XU A Q, CHEN Q Q, et al. An improved KELM based online condition prediction method[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(7): 1370-1379(in Chinese). doi: 10.13700/j.bh.1001-5965.2018.0685
    [20] HAN M, ZHANG R, XU M. Multivariate chaotic time series prediction based on ELM-PLSR and hybrid variable selection algorithm[J]. Neural Processing Letters, 2017, 46(2): 705-717. doi: 10.1007/s11063-017-9616-4
    [21] WANG X, HAN M. Multivariate time series prediction based on multiple kernel extreme learning machine[C]//International Joint Conference on Neural Networks. Piscataway: IEEE Press, 2014: 198-201.
    [22] 徐睿, 梁循, 齐金山, 等. 极限学习机前沿进展与趋势[J]. 计算机学报, 2019, 42(7): 1640-1670. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJX201907012.htm

    XU R, LIANG X, QI J S, et al. Advances and trends in extreme learning machine[J]. Chinese Journal of Computers, 2019, 42(7): 1640-1670(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSJX201907012.htm
    [23] ENGEL Y, MANNOR S, MEIR R. The kernel recursive least-squares algorithm[J]. IEEE Transactions on Signal Process, 2004, 52(8): 2275-2285. doi: 10.1109/TSP.2004.830985
    [24] FLORIS T. Detecting strange attractors in turbulence, in dynamical systems and turbulence, Warwick, 1980[J]. Lecture Notes in Mathematics, 1981: 898. http://www.researchgate.net/publication/287227084_detecting_strange_attractors_in_turbulence_in_dynamical_systems_and_turbulence_warwick_1980
    [25] PRINCIPE J C, LIU W, HAYKIN S. Kernel adaptive filtering: A comprehensive introduction[J]. IEEE Computational Intelligence Magazine, 2010, 5(3): 52-55. doi: 10.1109/MCI.2010.937324
  • 加载中
图(11) / 表(4)
计量
  • 文章访问数:  479
  • HTML全文浏览量:  98
  • PDF下载量:  184
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-04
  • 录用日期:  2020-10-25
  • 网络出版日期:  2021-11-20

目录

    /

    返回文章
    返回
    常见问答