留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于学习的中段反导拦截时间和拦截点预测方法

杨子成 鲜勇 李少朋 任乐亮 张大巧

杨子成, 鲜勇, 李少朋, 等 . 基于学习的中段反导拦截时间和拦截点预测方法[J]. 北京航空航天大学学报, 2021, 47(11): 2360-2368. doi: 10.13700/j.bh.1001-5965.2020.0409
引用本文: 杨子成, 鲜勇, 李少朋, 等 . 基于学习的中段反导拦截时间和拦截点预测方法[J]. 北京航空航天大学学报, 2021, 47(11): 2360-2368. doi: 10.13700/j.bh.1001-5965.2020.0409
YANG Zicheng, XIAN Yong, LI Shaopeng, et al. Prediction method of intercept time and intercept point based on learning mid-course antimissile[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(11): 2360-2368. doi: 10.13700/j.bh.1001-5965.2020.0409(in Chinese)
Citation: YANG Zicheng, XIAN Yong, LI Shaopeng, et al. Prediction method of intercept time and intercept point based on learning mid-course antimissile[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(11): 2360-2368. doi: 10.13700/j.bh.1001-5965.2020.0409(in Chinese)

基于学习的中段反导拦截时间和拦截点预测方法

doi: 10.13700/j.bh.1001-5965.2020.0409
详细信息
    通讯作者:

    鲜勇, E-mail: xy603xy@163.com

  • 中图分类号: V412.4;TJ761.3

Prediction method of intercept time and intercept point based on learning mid-course antimissile

More Information
  • 摘要:

    弹道导弹实时、准确地预测拦截弹的拦截点与拦截时间,是实现中段突防的有效手段。针对弹道导弹中段突防中的拦截点坐标及拦截时间的预测问题,提出了一种基于监督学习的在线预测方法。以拦截弹的主动段关机参数和关机时刻为输入量,建立拦截时间和拦截点预测模型。在多层感知机神经网络的基础上构建有监督学习算法,通过攻防仿真获取拦截弹的参数制作训练数据集,在线下完成网络训练。仿真结果表明:神经网络能够有效在线预测拦截时间和拦截点坐标,预测结果的相对误差分别为0.124 3%和0.128 5%,拦截时间预测结果误差的平均值为0.224 0 s,拦截点预测结果距离误差平均值为2 016.48 m,均满足精度要求。

     

  • 图 1  中段拦截对抗示意图

    Figure 1.  Schematic diagram of midcourse interception and confrontation

    图 2  拦截时间预测模型示意图

    Figure 2.  Schematic diagram of intercept time prediction model

    图 3  拦截点预测模型示意图

    Figure 3.  Schematic diagram of intercept point prediction model

    图 4  拦截时间预测网络结构

    Figure 4.  Intercept time prediction network structure

    图 5  拦截点预测网络结构

    Figure 5.  Intercept point prediction network structure

    图 6  拦截时间与拦截点预测流程

    Figure 6.  Flowchart of prediction of intercept time and intercept point

    图 7  拦截时间预测网络训练过程

    Figure 7.  Intercept time prediction network training process

    图 8  拦截点预测网络训练过程

    Figure 8.  Intercept point prediction network training process

    图 9  拦截时间预测误差统计直方图

    Figure 9.  Histogram of intercept time prediction error

    图 10  拦截时间部分样本预测误差

    Figure 10.  Intercept time partial sample prediction error

    图 11  拦截时间预测误差箱型图

    Figure 11.  Error box plot of intercept time prediction

    图 12  X轴方向拦截点坐标预测误差统计直方图

    Figure 12.  Histogram of X-axis intercept point's coordinate prediction error

    图 13  Y轴方向拦截点坐标预测误差统计直方图

    Figure 13.  Histogram of Y-axis intercept point's coordinate prediction error

    图 14  Z轴方向拦截点坐标预测误差统计直方图

    Figure 14.  Histogram of Z-axis intercept point's coordinate prediction error

    图 15  X轴方向拦截点坐标部分样本预测误差

    Figure 15.  X-axis intercept point's coordinate partial sample prediction error

    图 16  Y轴方向拦截点坐标部分样本预测误差

    Figure 16.  Y-axis intercept point's coordinate partial sample prediction error

    图 17  Z轴方向拦截点坐标部分样本预测误差

    Figure 17.  Z-axis intercept point's coordinate partial sample prediction error

    图 18  各方向拦截点坐标预测误差柱状图

    Figure 18.  Bar chart of error in different directions of intercept point prediction coordinate axis

    图 19  各方向拦截点坐标预测误差箱型图

    Figure 19.  Error box plot in different directions of intercept point prediction coordinate axis

    图 20  神经网络预测结果与弹道仿真结果的比较

    Figure 20.  Comparison of neural network predictionresults and trajectory simulation results

    表  1  拦截时间预测网络结构

    Table  1.   Intercept time prediction network structure

    层名称 网络结构
    输入层 7
    全连接层1 I: 7 O: 30
    激活函数1 ReLU
    全连接层2 I: 30 O: 50
    激活函数2 ReLU
    全连接层3 I: 50 O: 50
    激活函数3 ReLU
    全连接层4 I: 50 O: 30
    激活函数4 ReLU
    全连接层5 I: 30 O: 1
    输出层 1
    下载: 导出CSV

    表  2  拦截点预测网络结构

    Table  2.   Intercept point prediction network structure

    层名称 网络结构
    输入层 7
    全连接层1 I: 7 O: 64
    激活函数1 ReLU
    全连接层2 I: 64 O: 128
    激活函数2 ReLU
    全连接层3 I: 128 O: 64
    激活函数3 ReLU
    全连接层4 I: 64 O: 20
    激活函数4 ReLU
    全连接层5 I: 20 O: 1
    输出层 3
    下载: 导出CSV

    表  3  预测网络训练参数

    Table  3.   Prediction network training parameters

    训练参数 拦截时间预测网络 拦截点预测网络
    批尺寸 1 100
    学习率 0.000 1 0.000 1
    训练周期 94 54
    下载: 导出CSV

    表  4  拦截时间预测误差

    Table  4.   Prediction error of intercept time

    误差类型 平均值/s 最大值(绝对值) 标准差/s
    相对误差 0.124 3%
    误差 0.224 0 1.467 5 s 0.281 1
    下载: 导出CSV

    表  5  拦截点坐标预测误差

    Table  5.   Prediction error of intercept point's coordinates

    误差类型 平均值 最大值(绝对值) 标准差
    相对误差/% 0.128 5
    距离误差/m 2 016.48 9 255.64 1 223.14
    X轴坐标误差/m 379.45 3 150.91 536.05
    Y轴坐标误差/m 552.48 8 928.98 2 146.45
    Z轴坐标误差/m 94.60 2 293.46 457.69
    下载: 导出CSV
  • [1] 鲜勇, 郑晓龙. 弹道导弹攻防仿真系统建模[M]. 北京: 国防工业出版社, 2013: 14.

    XIAN Y, ZHENG X L. Modeling of ballistic missile attack and defense simulation system[M]. Beijing: National Defense Industry Press, 2013: 14(in Chinese).
    [2] THOMAS K, IAN W, WES R. Missile defense 2020: Next steps for defending the homeland[R]. Washington, D.C. : Center for Strategic International Studies, 2017.
    [3] 王虎, 邓大松. 地基拦截弹发展研究[J]. 战术导弹技术, 2019(3): 34-40. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSDD201903006.htm

    WANG H, DENG D S. Study on development of ground-based interceptor[J]. Tactical Missile Technology, 2019(3): 34-40(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZSDD201903006.htm
    [4] 田宪科, 张科. 导弹拦截点计算及其仿真分析[J]. 飞行力学, 2011, 29(2): 93-97. https://www.cnki.com.cn/Article/CJFDTOTAL-FHLX201102024.htm

    TIAN X K, ZHANG K. Calculation and simulation analysis of missile intercept point[J]. Flight Dynamics, 2011, 29(2): 93-97(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-FHLX201102024.htm
    [5] 张华伟, 董茜, 王文灿, 等. 基于预测命中点的反弹道导弹拦截方法研究[J]. 弹箭与制导学报, 2007(2): 196-199. doi: 10.3969/j.issn.1673-9728.2007.02.062

    ZHANG H W, DONG Q, WANG W C, et al. Research way of intercepting ballistic missile based on the forecasting hitting position[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2007(2): 196-199(in Chinese). doi: 10.3969/j.issn.1673-9728.2007.02.062
    [6] 王君, 周林, 雷虎民. 地空导弹与空中目标遭遇点预测模型和算法[J]. 系统仿真学报, 2009, 21(1): 80-83. https://www.cnki.com.cn/Article/CJFDTOTAL-XTFZ200901022.htm

    WANG J, ZHOU L, LEI H M. Forecast model and arithmetic on hit point of ground-to-air missile and aerial target[J]. Journal of System Simulation, 2009, 21(1): 80-83(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XTFZ200901022.htm
    [7] ZARCHAN P. Tactical and strategic missile guidance[M]. 6th ed. Reston: AIAA, 2012: 213-324, 715-862.
    [8] 谢经纬, 陈万春. 大气层外拦截弹建模与攻防效能分析[J]. 北京航空航天大学学报, 2018, 44(9): 1826-1838. doi: 10.13700/j.bh.1001-5965.2018.0095

    XIE J W, CHEN W C. Exo-atmospheric interceptor modeling and penetration and defense effectiveness analysis[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(9): 1826-1838(in Chinese). doi: 10.13700/j.bh.1001-5965.2018.0095
    [9] SONG E J, TAHK M J. Three-dimensional midcourse guidance using neural networks for interception of ballistic targets[J]. IEEE Transactions on Aerospace and Electronic Systems, 2002, 38(2): 404-414. doi: 10.1109/TAES.2002.1008975
    [10] SONG E J, LEE H, TAHK M. On-line suboptimal midcourse guidance using neural networks[C]//Proceedings of the 35th SICE Annual Conference International Session Papers. Piscataway: IEEE Press, 1996: 1313-1318.
    [11] SONG E J, TAHK M J. Real-time midcourse guidance with intercept point prediction[J]. Control Engineering Practice, 1998, 6(8): 957-967. doi: 10.1016/S0967-0661(98)00041-0
    [12] 袁亚军. 中远程导弹防御指控系统设计与仿真评估研究[D]. 哈尔滨: 哈尔滨工业大学, 2017: 11-13.

    YUAN Y J. The designation and research on middle-long range missile defense system command and control[D]. Harbin: Harbin Institute of Technology, 2017: 11-13(in Chinese).
    [13] CHIA H, TAN C, SUNG S. Enhancing knowledge discovery via association-based evolution of neural logic networks[J]. IEEE Transactions on Knowledge and Data Engineering, 2006, 18(7): 889-901. doi: 10.1109/TKDE.2006.111
    [14] XU J X, HOU Z S. Notes on data-driven system approaches[J]. Acta Automatica Sinica, 2009, 35(6): 668-675. http://aas.net.cn/CN/article/downloadArticleFile.do?attachType=PDF&id=13329
    [15] CHEN S, BILLINGS S A. Neural networks for nonlinear dynamic system modelling and identification[J]. International Journal of Control, 1991, 56(2): 319-346. http://www.onacademic.com/detail/journal_1000035255651810_b8c0.html
    [16] LESHNO M, LIN V Y, PINKUS A, et al. Multilayer feedforward networks with a nonpolynomial activation function can approximate any function[J]. Neural Networks, 1991, 6(6): 861-867. http://archive.nyu.edu/bitstream/2451/14384/1/IS-91-26.pdf
    [17] GOLIK P, DOETSCH P, NEY H. Cross-entropy vs. squared error training: A theoretical and experimental comparison[C]//Interspeech, 2013: 1756-1760.
    [18] ALMÁSI A, WOZ'NIAK S, CRISTEA V, et al. Review of advances in neural networks: Neural design technology stack[J]. Neurocomputing, 2016, 174: 31-41. http://cld.pt/dl/download/5cf0dc5f-72b0-4b05-953e-484f624b49f6/MyPapers/l984jnf_5506.pdf
    [19] GOODFELLOW I, BENGIO Y, COURVILLE A. Deep learning[M]. Cambridge: MIT Press, 2016.
    [20] 刘孝马. 大气层外动能拦截器中段制导相关问题研究[D]. 长沙: 国防科学技术大学, 2015: 13.

    LIU X M. Research on the problems about midcourse guidance for exo-atmospheric kill vehicle[D]. Changsha: National University of Defense Technology, 2015: 13(in Chinese).
  • 加载中
图(20) / 表(5)
计量
  • 文章访问数:  599
  • HTML全文浏览量:  142
  • PDF下载量:  104
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-09
  • 录用日期:  2020-10-27
  • 网络出版日期:  2021-11-20

目录

    /

    返回文章
    返回
    常见问答