留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种基于深度学习的电磁信息泄漏检测方法

茅剑 刘泰康 刘培国

茅剑, 刘泰康, 刘培国等 . 一种基于深度学习的电磁信息泄漏检测方法[J]. 北京航空航天大学学报, 2021, 47(11): 2200-2207. doi: 10.13700/j.bh.1001-5965.2020.0420
引用本文: 茅剑, 刘泰康, 刘培国等 . 一种基于深度学习的电磁信息泄漏检测方法[J]. 北京航空航天大学学报, 2021, 47(11): 2200-2207. doi: 10.13700/j.bh.1001-5965.2020.0420
MAO Jian, LIU Taikang, LIU Peiguoet al. An electromagnetic information leakage detection method using deep learning[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(11): 2200-2207. doi: 10.13700/j.bh.1001-5965.2020.0420(in Chinese)
Citation: MAO Jian, LIU Taikang, LIU Peiguoet al. An electromagnetic information leakage detection method using deep learning[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(11): 2200-2207. doi: 10.13700/j.bh.1001-5965.2020.0420(in Chinese)

一种基于深度学习的电磁信息泄漏检测方法

doi: 10.13700/j.bh.1001-5965.2020.0420
基金项目: 

国家自然科学基金 61672335

详细信息
    通讯作者:

    茅剑, E-mail: maojian@jmu.edu.cn

  • 中图分类号: TP309.1;TN911.23

An electromagnetic information leakage detection method using deep learning

Funds: 

National Natural Science Foundation of China 61672335

More Information
  • 摘要:

    电子信息设备工作时无意发射的电磁波中包含有用信息,会导致电磁信息泄漏,从而威胁设备的信息安全。现有的电磁信息泄漏检测方法,在复杂现场环境下,难以从具有不确定性的电磁泄漏信号中提取有用信息。面向电磁信息安全问题,开展了电磁信息泄漏检测研究,提出了一种基于深度学习的检测方法。设计了一个适用于电磁泄漏信号的一维卷积神经网络,并结合改进的梯度加权类激活映射方法,在未知电磁信息泄漏特征的前提下,通过深度学习实现电磁信息泄漏特征的智能标定和自动提取,从而解决了现场环境下电磁信息泄漏检测难以提取有用信息的问题。分别通过实测和仿真对比实验,验证了所提方法的有效性。

     

  • 图 1  基于深度学习的电磁信息泄漏检测原理

    Figure 1.  Electromagnetic information leakage detection principle based on deep learning

    图 2  EM-CNN处理电磁泄漏信号示意图

    Figure 2.  Schematic diagram of electromagnetic leakage signal processing by EM-CNN

    图 3  计算机显示器电磁信息泄漏标定的实测验证

    Figure 3.  Experimental verification for electromagnetic information leakage detection on computer displayer

    图 4  不同阈值下的仿真性能曲线

    Figure 4.  Simulation performance curves under different thresholds

    图 5  EM-CNN与AlexNet的性能比较

    Figure 5.  Performance comparison between EM-CNN and AlexNet

    图 6  不同CNN的检测准确率比较

    Figure 6.  Comparison of detection accuracy rates using different CNNs

    图 7  不同CNN的检测召回率比较

    Figure 7.  Comparison of detection recall rates using different CNNs

    表  1  EM-CNN结构参数

    Table  1.   Parameters of EM-CNN structure

    神经网络层次 卷积核/滤波器尺寸 计算步长 通道数
    卷积层1 4 2 32
    池化层1 2 2 32
    卷积层2 12 2 32
    池化层2 2 2 32
    卷积层3 12 2 32
    池化层3 2 2 32
    卷积层4 12 2 64
    池化层4 2 2 64
    下载: 导出CSV
  • [1] 刘泰康, 李咏梅, 等. 电磁信息泄漏及防护技术[M]. 北京: 国防工业出版社, 2015: 11-125.

    LIU T K, LI Y M, et al. Electromagnetic information leakage and countermeasure technique[M]. Beijing: National Defense Industry Press, 2015: 11-125(in Chinese).
    [2] VAN ECK W. Electromagnetic radiation from video display units: An eavesdropping risk [J]. Computers and Security, 1985, 4(4): 269-286. doi: 10.1016/0167-4048(85)90046-X
    [3] KUHN M G. Eavesdropping attacks on computer displays[C]//Proceedings of Information Security Summit, 2006: 1-10.
    [4] KUHN M G. Optical time-domain eavesdropping risks of CRT displays[C]//Proceedings of IEEE Symposium on Security & Privacy. Piscataway: IEEE Press, 2002: 3-18.
    [5] KUHN M G. Security limits for compromising emanations[C]//International Workshop on Cryptographic Hardware and Embedded Systems. Berlin: Springer, 2005, 3659: 265-279.
    [6] KUHN M G. Compromising emanations of LCD TV sets[J]. IEEE Transactions on Electromagnetic Compatibility, 2013, 55(3): 564-570. doi: 10.1109/TEMC.2013.2252353
    [7] KUHN M G. Electromagnetic eavesdropping risks of flat-panel displays: Lecture notes in computer science[C]//Proceedings of the 4th International Conference on Privacy Enhancing Technologies. Berlin: Springer, 2005, 3424: 88-107.
    [8] SEKIGUCHI H. Information leakage of input operation on touch screen monitors caused by electromagnetic noise[C]//Proceedings of IEEE International Symposium on Electromagnetic Compatibility. Piscataway: IEEE Press, 2010: 127-131.
    [9] SHI J, YONGACOGLU A, SUN D, et al. A novel wavelet based independent component analysis method for pre-processing computer video leakage signal[C]//Proceedings of IEEE Symposium on Computers and Communications. Piscataway: IEEE Press, 2016: 334-339.
    [10] SUN D, SHI J, WEI D, et al. A low-cost and efficient method of determining the best frequency band for video leaking signal reconstruction[C]//Proceedings of International Conference on Systems and Informatics. Piscataway: IEEE Press, 2015: 624-628.
    [11] TOSAKA T, YAMANAKA Y, FUKUNAGA K. Method for determining whether or not information is contained in electromagnetic disturbance radiated from a PC display[J]. IEEE Transactions on Electromagnetic Compatibility, 2011, 53(2): 318-324. doi: 10.1109/TEMC.2010.2103562
    [12] MAO J, LIU P, LIU J, et al. Method for detecting electromagnetic information leakage from computer monitor[J]. Control and Intelligent Systems, 2017, 45(1): 37-42. http://smartsearch.nstl.gov.cn/paper_detail.html?id=1ac05d2eff92b309a45c8445b1efc977
    [13] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[C]//Annual Conference on Neural Information Processing Systems, 2012: 1097-1105.
    [14] CHO S I, KANG S. Gradient prior-aided CNN denoiser with separable convolution-based optimization of feature dimension[J]. IEEE Transactions on Multimedia, 2019, 21(2): 484-493. doi: 10.1109/TMM.2018.2859791
    [15] DENG Z, SUN H, ZHOU S, et al. Multi-scale object detection in remote sensing imagery with convolutional neural networks[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 145: 3-22. doi: 10.1016/j.isprsjprs.2018.04.003
    [16] CHEN S, XU L, MA L, et al. Convolutional neural network for classification of solar radio spectrum[C]//Proceedings of IEEE International Conference on Multimedia and Expo Workshops. Piscataway: IEEE Press, 2017: 198-201.
    [17] ZHANG X, LIN T, XU J, et al. DeepSpectra: An end-to-end deep learning approach for quantitative spectral analysis[J]. Analytica Chimica Acta, 2019, 1058: 48-57. doi: 10.1016/j.aca.2019.01.002
    [18] SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-CAM: Visual explanations from deep networks via gradient-based localization[C]//Proceedings of the IEEE International Conference on Computer Vision. Piscataway: IEEE Press, 2017: 618-626.
    [19] CAO J, PANG Y, LI X, et al. Randomly translational activation inspired by the input distributions of ReLU[J]. Neuro Computing, 2018, 275: 859-868. http://www.onacademic.com/detail/journal_1000040110605810_a66d.html
    [20] SRIVASTAVA N, HINTON G, KRIZHEVSKY A, et al. Dropout: A simple way to prevent neural networks from overfitting[J]. Journal of Machine Learning Research, 2014, 15(1): 1929-1958. http://jmlr.org/papers/volume15/srivastava14a.old/srivastava14a.pdf
    [21] VESA. VESA and industry standards and guidelines for computer display monitor timing (DMT)[S]. San Jose: VESA, 2013.
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  827
  • HTML全文浏览量:  142
  • PDF下载量:  163
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-12
  • 录用日期:  2021-01-08
  • 网络出版日期:  2021-11-20

目录

    /

    返回文章
    返回
    常见问答