留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

柔性夹爪收缩与扩张过程的能耗研究

张业明 李东园 许未晴 蔡茂林 虞启辉 李楷敏

张业明, 李东园, 许未晴, 等 . 柔性夹爪收缩与扩张过程的能耗研究[J]. 北京航空航天大学学报, 2021, 47(11): 2208-2214. doi: 10.13700/j.bh.1001-5965.2020.0430
引用本文: 张业明, 李东园, 许未晴, 等 . 柔性夹爪收缩与扩张过程的能耗研究[J]. 北京航空航天大学学报, 2021, 47(11): 2208-2214. doi: 10.13700/j.bh.1001-5965.2020.0430
ZHANG Yeming, LI Dongyuan, XU Weiqing, et al. Energy consumption of flexible gripper during contraction and expansion[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(11): 2208-2214. doi: 10.13700/j.bh.1001-5965.2020.0430(in Chinese)
Citation: ZHANG Yeming, LI Dongyuan, XU Weiqing, et al. Energy consumption of flexible gripper during contraction and expansion[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(11): 2208-2214. doi: 10.13700/j.bh.1001-5965.2020.0430(in Chinese)

柔性夹爪收缩与扩张过程的能耗研究

doi: 10.13700/j.bh.1001-5965.2020.0430
基金项目: 

流体动力与机电系统国家重点实验室开放基金 GZKF-202016

北京高等学校卓越青年科学家计划 BJJWZYJH01201910006021

河南省科技攻关计划 202102210081

详细信息
    通讯作者:

    许未晴, E-mail: weiqing.xu@buaa.edu.cn

  • 中图分类号: TH138;TP271.3

Energy consumption of flexible gripper during contraction and expansion

Funds: 

Open Foundation of the State Key Laboratory of Fluid Power and Mechatronic Systems GZKF-202016

Outstanding Young Scientists Program in Beijing Universities BJJWZYJH01201910006021

Key Science and Technology Program of Henan, China 202102210081

More Information
  • 摘要:

    通过工控机的数据采集系统,结合传感器技术、信号处理技术等,搭建设备建立气体压力、流量等参数的在线测量系统,实现对测控系统的调节和控制。首先,分别采集柔性夹爪在收缩和扩张时不同初始压力下的压力与流量;然后,通过SigmaPlot绘出柔性夹爪压力流量图,并对柔性夹爪流量压力输出特性进行分析;最后,计算其气动功率,研究能耗规律。结果表明:对柔性夹爪进行收缩实验时,给定的初始压力与柔性夹爪产生的压力相差不大,气动功率损耗较小;对柔性夹爪进行扩张实验时,提供的初始压力通过真空发生器间接作用在柔性夹爪上,与柔性夹爪产生的压力相差较大,柔性夹爪达到规定压力时需要提供更大的初始压力;柔性夹爪收缩时比扩张时的气动功率损耗低。

     

  • 图 1  柔性夹爪收缩时的系统原理

    1—空气压缩机;2—精密减压阀;3—压力表;4—流量计;5, 8—电磁换向阀;6—真空发生器;7—消音器;9—压力变送器;10—柔性夹爪。

    Figure 1.  System schematic of flexible gripper during contraction

    图 2  柔性夹爪扩张时的系统原理

    1—空气压缩机;2—精密减压阀;3—压力表;4—流量计;5, 8—电磁换向阀;6—真空发生器;7—消音器;9—压力变送器;10—柔性夹爪。

    Figure 2.  System schematic of flexible gripper during expansion

    图 3  柔性夹爪控制系统实验平台

    Figure 3.  Experimental platform of flexible gripper control system

    图 4  柔性夹爪收缩时的压力和流量

    Figure 4.  Pressure and flow rate of flexible gripper during contraction

    图 5  柔性夹爪扩张时的压力和流量(图 2(a)实验平台)

    Figure 5.  Pressure and flow rate of flexible gripper during expansion (Fig. 2(a) experimental platform)

    图 6  柔性夹爪扩张时的压力和流量(图 2(b)实验平台)

    Figure 6.  Pressure and flow rate of flexible gripper during expansion (Fig. 2(b) experimental platform)

    图 7  柔性夹爪收缩和扩张时压力的滞环特性

    Figure 7.  Pressure hysteresis characteristics of flexible gripper during contraction and expansion

    图 8  柔性夹爪收缩时的气动功率

    Figure 8.  Pneumatic power of flexible gripper during contraction

    图 9  柔性夹爪扩张时的气动功率(图 2(a)实验平台)

    Figure 9.  Pneumatic power of flexible gripper during expansion (Fig. 2(a) experimental platform)

    图 10  柔性夹爪扩张时的气动功率(图 2(b)实验平台)

    Figure 10.  Pneumatic power of flexible gripper during expansion (Fig. 2(b) experimental platform)

    图 11  柔性夹爪扩张时占总系统的气动功率比

    Figure 11.  Pneumatic power ratio of flexible gripper during expansion in total system

    表  1  主要元器件的型号和参数

    Table  1.   Models and parameters of main components

    元器件 型号 参数
    空气压缩机 PANDA 750-30L 最大供气压力:0.8 MPa
    精密减压阀 IR2000-02B-R 最大工作压力:1.0 MPa
    真空发生器 CV-10HS 压力范围:0.1~0.6 MPa
    电磁换向阀 VT307-5G-01 量程:0~0.9 MPa
    压力变送器 美控MIK-P300 量程:-0.1~0.1 MPa;精度:0.3%FS
    流量计 FESTO SFAH-5U-Q6S-PNLK-PNVBA-M8 量程:0.1~5 L/min;精度:2% o.m.v.+1%FS
    温度隔离器 顺来达SLDTR-2P11 响应时间:≤10 ms;精度:0.1%FS
    数据采集卡 NI 6358 32位计数器;输出电压:-10~10 V
    柔性夹爪 SFG-FMA 工作压力:-100~100 kPa;精度:0.08 mm
        注:FS是Full-scale(满量程)的简写,表示满量程的线性(度), 即仪表显示的误差(整体误差); o.m.v.是Orifice Maximum Volume的英文简写,2% o.m.v.表示流量精度为孔口最大体积流量的2%。
    下载: 导出CSV
  • [1] 曹玉君, 尚建忠, 梁科山, 等. 软体机器人研究现状综述[J]. 机械工程学报, 2012, 48(3): 25-33. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201203005.htm

    CAO Y J, SHANG J Z, LIANG K S, et al. Review of soft-bodied robots[J]. Journal of Mechanical Engineering, 2012, 48(3): 25-33(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201203005.htm
    [2] 张进华, 王韬, 洪军, 等. 软体机械手研究综述[J]. 机械工程学报, 2017, 53(13): 19-28. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201713003.htm

    ZHANG J H, WANG T, HONG J, et al. Review of soft-bodied manipulator[J]. Journal of Mechanical Engineering, 2017, 53(13): 19-28(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201713003.htm
    [3] 张晗. 气动软体机械手抓取性能研究[D]. 西安: 西安理工大学, 2019: 1-8.

    ZHANG H. Research on grasping performance of pneumatic soft gripper[D]. Xi'an: Xi'an University of Technology, 2019: 1-8(in Chinese).
    [4] 韩鹰. 典型气动柔性执行器的设计建模与应用[D]. 哈尔滨: 哈尔滨工业大学, 2018: 5-11.

    HAN Y. Research on design modelling and application of typical pneumatic soft actuators[D]. Harbin: Harbin Institute of Technology, 2018: 5-11(in Chinese).
    [5] 钟佳炜, 刘忠, 霍佳波, 等. 比例压力流量阀控缸系统的建模与输出特性研究[J]. 机械制造与自动化, 2019, 48(4): 89-92. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZHD201904024.htm

    ZHONG J W, LIU Z, HUO J B, et al. Research on modeling and output characteristics of control cylinder system for proportional pressure flow valve[J]. Machine Building & Automation, 2019, 48(4): 89-92(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZZHD201904024.htm
    [6] 杨志春, 郁林聪. 单柱塞泵流量压力输出特性研究[J]. 液压与气动, 2019(10): 135-140. doi: 10.11832/j.issn.1000-4858.2019.10.023

    YANG Z C, YU L C. Study on flow and pressure characteristics of single piston pump[J]. Chinese Hydraulics & Pneumatics, 2019(10): 135-140(in Chinese). doi: 10.11832/j.issn.1000-4858.2019.10.023
    [7] 蔡茂林, 石岩. 压缩空气系统节能关键技术体系及其应用[J]. 液压气动与密封, 2012, 32(12): 63-66. doi: 10.3969/j.issn.1008-0813.2012.12.021

    CAI M L, SHI Y. Energy-saving key technologies system of compressed air system and its applications[J]. Hydraulics Pneumatics & Seals, 2012, 32(12): 63-66(in Chinese). doi: 10.3969/j.issn.1008-0813.2012.12.021
    [8] 刘永, 谷立臣, 杨彬, 等. 液压系统流量、压力闭环控制实验研究[J]. 机床与液压, 2017, 45(7): 23-25. doi: 10.3969/j.issn.1001-3881.2017.07.006

    LIU Y, GU L C, YANG B, et al. Experimental study on closed loop control of flow and pressure of hydraulic system[J]. Machine Tool & Hydraulics, 2017, 45(7): 23-25(in Chinese). doi: 10.3969/j.issn.1001-3881.2017.07.006
    [9] 张晋涛, 杜玉红, 陈小龙, 等. 气体流量压力测试系统[J]. 机电工程技术, 2011, 40(10): 83-86. https://www.cnki.com.cn/Article/CJFDTOTAL-JXKF201110025.htm

    ZHANG J T, DU Y H, CHEN X L, et al. Gas flow and pressure test system[J]. Electromechanical Engineering Technology, 2011, 40(10): 83-86(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXKF201110025.htm
    [10] 徐昆, 卢苇, 王博韬, 等. 气体在热流逸效应作用下的压力与流量特性[J]. 高校化学工程学报, 2017, 31(6): 1285-1292. doi: 10.3969/j.issn.1003-9015.2017.06.005

    XU K, LU W, WANG B T, et al. Pressure and mass flow characteristics of gases under thermal transpiration effects[J]. Journal of Chemical Engineering of Chinese Universities, 2017, 31(6): 1285-1292(in Chinese). doi: 10.3969/j.issn.1003-9015.2017.06.005
    [11] 李珂. 摆动气缸位置伺服控制系统研究[D]. 焦作: 河南理工大学, 2019: 10-14.

    LI K. Research on pneumatic rotary actuator position servo control system[D]. Jiaozuo: Henan Polytechnic University, 2019: 10-14(in Chinese).
    [12] ZHANG Y M, YUE H W, LI K, et al. Analysis of power matching on energy saving of pneumatic rotary actuator servo-control system[J]. Chinese Journal of Mechanical Engineering, 2020(2): 87-99. http://www.cqvip.com/QK/85891X/202002/7101768404.html
    [13] ZHANG Y M, LI K, WANG G, et al. Nonlinear model establishment and experimental verification of a pneumatic rotary actuator position servo system[J]. Energies, 2019, 12(6): 1096. doi: 10.3390/en12061096
    [14] CAI M L. Modern pneumatic technology theory and practice. Chapter 5: The characteristics of cylinder drive systems[J]. Hydraulics Pneumatics and Seals, 2007, 27(6): 55-58.
    [15] 蔡茂林, 香川利春. 气动系统的能量消耗评价体系及能量损失分析[J]. 机械工程学报, 2007, 43(9): 69-74. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB200709017.htm

    CAI M L, KAGAWA T. Energy consumption assessment and energy loss analysis of pneumatic system[J]. Journal of Mechanical Engineering, 2007, 43(9): 69-74(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB200709017.htm
    [16] ZHANG Y M, CAI M L. Overall life cycle comprehensive assessment of pneumatic and electric actuator[J]. Chinese Journal of Mechanical Engineering, 2014, 27(3): 584-594. doi: 10.3901/CJME.2014.03.584
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  424
  • HTML全文浏览量:  107
  • PDF下载量:  145
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-13
  • 录用日期:  2020-12-28
  • 网络出版日期:  2021-11-20

目录

    /

    返回文章
    返回
    常见问答