Optimization method of multi-constellation GNSS vertical protection level based on particle swarm optimization algorithm
-
摘要:
针对传统的高级接收机自主完好性监测(ARAIM)算法中完好性风险和连续性风险分配存在保守的问题,提出了一种基于粒子群优化(PSO)算法的完好性风险和连续性风险分配方法。将不同的分配策略作为算法中不同的粒子,选取不同故障子集对应的垂直保护级的加权和为适应度函数,每个粒子基于粒子群优化寻优原理更新其位置及速度直至满足条件,进而得到优化后的分配策略和对应的垂直保护级。通过双星座对所提方法进行验证,并与传统方法进行对比分析,结果表明:基于PSO算法的完好性风险和连续性风险分配策略优化了垂直保护级,提高了ARAIM全球可用性。
-
关键词:
- GNSS /
- 垂直保护级 /
- 完好性风险 /
- 连续性风险 /
- 粒子群优化(PSO)算法
Abstract:Aimed at the conservative problem of integrity risk and continuity risk allocation in the traditional Advanced Receiver Autonomous Integrity Monitoring (ARAIM) algorithm, a new integrity risk and continuity risk allocation method based on Particle Swarm Optimization (PSO) algorithm is proposed. This method uses different allocation strategies as different particles in the algorithm, and selects the weighted sum of the vertical protection levels corresponding to different fault subsets as the fitness function. Each particle updates its position and speed based on the principle of particle swarm optimization until the conditions are met, and then the optimized allocation strategy and the corresponding vertical protection level are obtained. The algorithm is verified through dual constellations and compared with traditional methods. The results show that the integrity risk and continuity risk allocation strategy based on the particle swarm optimization algorithm optimizes the vertical protection level and improves the ARAIM global availability.
-
表 1 ISM参数设置
Table 1. ISM parameter setting
组号 星座 Psat Pconst bcont bnom σURA σURE 1 GPS 10-5 10-8 0 3/4 1 2/3 BDS 10-4 10-8 0 3/4 1 2/3 2 GPS 10-4 10-8 0 3/4 1 2/3 BDS 10-5 10-8 0 3/4 1 2/3 3 GPS 10-5 10-8 0 3/4 3/2 1 BDS 10-4 10-8 0 3/4 1 2/3 4 GPS 10-4 10-8 0 3/4 1 2/3 BDS 10-5 10-8 0 3/4 3/2 1 表 2 优化前后的ARAIM全球可用性对比
Table 2. Global availability comparison of ARAIM before and after optimization
组号 ARAIM全球可用性/% 传统分配方法 本文方法 1 90.77 92.44 2 92.10 93.49 3 77.62 79.40 4 79.23 81.01 -
[1] 刘金鑫, 滕继涛, 李锐, 等. 基于子集包含减少ARAIM子集数量的方法[J]. 北京航空航天大学学报, 2020, 46(8): 1592-1660. doi: 10.13700/j.bh.1001-5965.2019.0517LIU J X, TENG J T, LI R, et al. Method for reducing the number of ARAIM subsets[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(8): 1592-1660(in Chinese). doi: 10.13700/j.bh.1001-5965.2019.0517 [2] BLANCH J, WALTER T, ENGE P, et al. Advanced RAIM user algorithm description: Integrity support message processing, fault detection, exclusion, and protection level calculation[C]//ION Global Navigation Satellite Systems Conference, 2012: 2828-2849. [3] MENG Q, LIU J Y, ZENG Q H, et al. Improved ARAIM fault modes determination scheme based on feedback structure with probability accumulation[J]. GPS Solutions, 2019, 23(1): 16. doi: 10.1007/s10291-018-0809-8 [4] 王尔申, 杨迪, 宏晨, 等. ARAIM技术研究进展[J]. 电信科学, 2019, 35(8): 128-138. https://www.cnki.com.cn/Article/CJFDTOTAL-DXKX201908014.htmWANG E S, YANG D, HONG C, et al. Research progress of ARAIM technology[J]. Telecommunications Science, 2019, 35(8): 128-138(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DXKX201908014.htm [5] JOERGER M, PERVAN B. Multi-constellation ARAIM exploiting satellite motion[J]. Navigation, 2020, 67(2): 235-253. doi: 10.1002/navi.334 [6] ZHAI Y W, ZHAN X Q, CHANG J, et al. ARAIM with more than two constellations[C]//ION 2019 Pacific PNT Meeting, 2019: 925-941. [7] LUO S L, WANG L, TU R, et al. Satellite selection methods for multi-constellation advanced RAIM[J]. Advances in Space Research, 2020, 65(5): 1503-1517. doi: 10.1016/j.asr.2019.12.015 [8] BANG E, MILNER C, MACABIAU C, et al. ARAIM temporal correlation effect on PHMI[C]//International Technical Meeting of the Satellite Division of the Institute of Navigation, 2018: 2682-2694. [9] SUN X, XU L, JI Y, et al. An extremum approximation ARAIM algorithm based on GPS and BDS[J]. IEEE Access, 2020, 8: 30027-30036. doi: 10.1109/ACCESS.2020.2972766 [10] SUN Y, WANG T S, WANG Z P, et al. Optimal risk allocation for BDS/GPS advanced receiver autonomous integrity monitoring[C]//Proceedings of the 2015 International Technical Meeting of the Institute of Navigation, 2015: 687-695. [11] BLANCH J, WALTER T, ENGE P. RAIM with optimal integrity and continuity allocations under multiple failures[J]. IEEE Transactions on Aerospace and Electronic Systems, 2010, 46(3): 1235-1247. doi: 10.1109/TAES.2010.5545186 [12] EL-MOWAFY A, YANG C. Limited sensitivity analysis of ARAIM availability for LPV-200 over Australia using real data[J]. Advances in Space Research, 2016, 57(2): 659-670. doi: 10.1016/j.asr.2015.10.046 [13] Working Group C, EU-U.S. ARAIM technical subgroup milestone 3 report[EB/OL]. (2016-02-25)[2019-09-20]. https://www.gps.gov/policy/cooperation/europe/2016/working-group-c/ARAIM-milestone-3-report.pdf. [14] Working Group C, EU-U.S. ARAIM concept of operation[EB/OL]. [2019-09-20]. https://portal.icao.int/nsp/meetingdocuments/NSP4-10-20-October2017/NSP4_ip18_HARAIMConOps-final.docx. [15] 刘若辰, 李建霞, 刘静, 等. 动态多目标优化研究综述[J]. 计算机学报, 2020, 43(7): 1246-1278. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJX202007005.htmLIU R C, LI J X, LIU J, et al. A survey on dynamic multi-objective optimization[J]. Chinese Journal of Computers, 2020, 43(7): 1246-1278(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSJX202007005.htm [16] RUSSELL C E, SHI Y. Particle swarm optimization: Developments, applications and resources[C]//Congress on Evolutionary Computation, 2002: 81-86.