留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

气冷涡轮导叶流热耦合计算及机理

李心语 刘火星

李心语, 刘火星. 气冷涡轮导叶流热耦合计算及机理[J]. 北京航空航天大学学报, 2021, 47(11): 2378-2386. doi: 10.13700/j.bh.1001-5965.2020.0435
引用本文: 李心语, 刘火星. 气冷涡轮导叶流热耦合计算及机理[J]. 北京航空航天大学学报, 2021, 47(11): 2378-2386. doi: 10.13700/j.bh.1001-5965.2020.0435
LI Xinyu, LIU Huoxing. Conjugate heat transfer simulation and mechanism of air-cooled turbine guide vanes[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(11): 2378-2386. doi: 10.13700/j.bh.1001-5965.2020.0435(in Chinese)
Citation: LI Xinyu, LIU Huoxing. Conjugate heat transfer simulation and mechanism of air-cooled turbine guide vanes[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(11): 2378-2386. doi: 10.13700/j.bh.1001-5965.2020.0435(in Chinese)

气冷涡轮导叶流热耦合计算及机理

doi: 10.13700/j.bh.1001-5965.2020.0435
详细信息
    通讯作者:

    刘火星, E-mail: liuhuoxing@buaa.edu.cn

  • 中图分类号: V232.4;TK121

Conjugate heat transfer simulation and mechanism of air-cooled turbine guide vanes

More Information
  • 摘要:

    针对气冷涡轮叶片的多场耦合特性,利用流热耦合(CHT)方法,对采用不同气冷结构的高压涡轮导叶进行数值模拟。在内冷涡轮导叶算例中,对比实验数据选取精度较高的流热耦合计算方案,分析该内冷涡轮导叶的多场特性及耦合机理。在此基础上,以带有气膜冷却孔及内冷通道的气冷涡轮导叶为研究对象,重点围绕冷却射流与主流的相互作用,讨论近壁边界层中流热耦合关系及气冷效率影响因素等相关问题。结果表明:采用流热耦合计算方法及合适的湍流转捩模型有利于提高数值精度;气冷涡轮导叶的流场温度场密切耦合,流动换热特性互相影响;冷气射速低时,增加冷气流量可提高气膜冷却效率,冷气量达到一定值时,冷气流量增加将导致气膜冷却孔后上游冷却效果变差,下游冷却效果变好;冷气射速较高时,将与主流相互作用产生复杂流动结构(如肾形涡、马蹄涡等),对温度分布存在一定影响。

     

  • 图 1  MARK Ⅱ几何气动外形及内冷结构编号示意图

    Figure 1.  MARKⅡgeometry and schematic diagram of internal cooling structure numbering

    图 2  MARK Ⅱ叶片三维网格划分情况

    Figure 2.  Generation of 3D mesh of MarkⅡblade

    图 3  不同壁温条件下叶表温度分布曲线

    Figure 3.  Surface temperature distribution curves of blade under different wall temperature conditions

    图 4  不同计算模型求解的叶表温度分布曲线

    Figure 4.  Surface temperature distribution curves of blade solved by different calculation models

    图 5  不同PrT条件求解的叶表温度分布曲线

    Figure 5.  Surface temperature distribution curves of blade solved under different PrT conditions

    图 6  叶表压力分布曲线

    Figure 6.  Surface pressure distribution curve of blade

    图 7  MARKⅡ叶表马赫数云图

    Figure 7.  Contour of Mach number at surface of MARKⅡblade

    图 8  叶表温度分布曲线

    Figure 8.  Surface temperature distribution curve of blade

    图 9  叶表换热系数分布曲线

    图 10  流体域及叶片内部温度分布云图

    Figure 10.  Temperature distribution contour in fluid domain and blade interior

    图 11  叶片内部等效热应力分布

    Figure 11.  Distribution of equivalent thermal stress inside blade

    图 12  给定约束后叶片总变形量

    Figure 12.  Total variation quantity of blade with given constraints

    Figure 13.  Schematic diagram of outlet angle of film-cooling hole

    图 14  气冷叶片几何造型

    Figure 14.  Geometry model of air-cooled blade

    图 15  流体域网格划分

    Figure 15.  Mesh generation of fluid domain

    图 16  叶片网格组装示意图

    Figure 16.  Schematic diagram of assembled mesh of blade

    图 17  改型MARKⅡ叶表马赫数云图

    Figure 17.  Contour of Mach number at surface of retrofittedMARKⅡblade

    图 18  叶表温度云图

    Figure 18.  Contour of temperature at surface of blade

    图 19  不同吹风比下压力面温度分布

    Figure 19.  Temperature distribution of pressure surface under different blowing ratios

    图 20  不同冷气射速下气膜冷却孔下游流线放大图

    Figure 20.  Enlarged streamline distribution of downstream hole at different flow velocities of cold air

    图 21  高速射流条件下不同位置横向流线发展过程

    Figure 21.  Development of transverse streamlines at different positions under high-speed jet conditions

    图 22  高速射流条件下受剪切作用形成的二次涡对

    Figure 22.  Secondary vortex pair induced by shear under high-speed jet conditions

    图 23  高速射流条件下局部壁面极限流线

    Figure 23.  Local wall limit streamlines under high-speedjet conditions

  • [1] 邹正平, 王松涛, 刘火星, 等. 航空燃气轮机涡轮气体动力学: 流动机理及气动设计[M]. 上海: 上海交通大学出版社, 2014: 101-102.

    ZOU Z P, WANG S T, LIU H X, et al. Turbine gas dynamics of air gas turbine: Flow mechanism and pneumatic design[M]. Shanghai: Shanghai Jiao Tong University Press, 2014: 101-102(in Chinese).
    [2] 安玉戈, 刘火星, 邹正平. 涡轮端区密封结构泄漏流动气热耦合研究[J]. 工程热物理学报, 2015, 36(12): 2579-2583. https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201512009.htm

    AN Y G, LIU H X, ZOU Z P. Aerothermal analysis of a turbine with endwall leakage flow[J]. Journal of Engineering Thermophysics, 2015, 36(12): 2579-2583(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201512009.htm
    [3] 张红军. 多孔/流体/固体多区域流热耦合数值模拟方法以及耦合机制研究[D]. 北京: 北京航空航天大学, 2013: 26-29.

    ZHANG H J. Investigation of numerical conjugate heat transfer method and coupling mechanism for hybrid porous/fluid/solid domains[D]. Beijing: Beihang University, 2013: 26-29(in Chinese).
    [4] HEIDMANN J D, KASSAB A J, DIVO E A, et al. Conjugate heat transfer effects on a realistic film-cooled turbine vane: GT2003-38553[R]. New York: ASME, 2003.
    [5] BOHN D, BONHOFF B, SCHÖNENBORN H. Combined aerodynamic and thermal analysis of a turbine nozzle guide vane: IGTC-paper-108[R]. : IGTC, 1995.
    [6] 李宇. 三维流/热耦合数值模拟程序的发展及方法研究[D]. 北京: 北京航空航天大学, 2011: 33-36.

    LI Y. A 3-D conjugate heat transfer solver and methodology research[D]. Beijing: Beihang University, 2011: 33-36(in Chinese).
    [7] 苏欣荣, 袁新. 并行计算环境中的高效气热耦合方法[J]. 工程热物理学报, 2017, 38(1): 49-53. https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201701009.htm

    SU X R, YUAN X. Efficient gas-heat coupling method in parallel computing environment[J]. Journal of Engineering Thermophysics, 2017, 38(1): 49-53(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201701009.htm
    [8] EIFEL M, CASPARY V, HONEN H, et al. Experimental and numerical analysis of gas turbine blades with different internal cooling geometries[J]. Journal of Turbomachinery, 2011, 133(1): 11018-11019. doi: 10.1115/1.4000541
    [9] MAZUR Z, HERNANDEZ-ROSSETTE A, GARCIA-ILLESCAS R, et al. Analysis of conjugate heat transfer of a gas turbine first stage nozzle[J]. Applied Thermal Engineering, 2006, 26(16): 1796-1806. doi: 10.1016/j.applthermaleng.2006.01.025
    [10] 董平. 航空发动机气冷涡轮叶片的气热耦合数值模拟研究[D]. 哈尔滨: 哈尔滨工业大学, 2009: 10-11.

    DONG P. Research on conjugate heat transfer simulation of aero turbine engine air-cooled vane[D]. Harbin: Harbin Institute of Technology, 2009: 10-11(in Chinese).
    [11] HYLTON L D, MIHELC M S, TURNER E R, et al. Analytical and experiment evaluation of the heat transfer distribution over the surface of turbine vane: NASA-CR-168015[R]. Washington, D.C. : NASA, 1983.
    [12] LUO J, RAZINSKY E H. Conjugate heat transfer analysis of a cooled turbine vane using the V2F turbulence model: GT2006-91109[R]. New York: ASME, 2006.
    [13] 尚修宇. 高压涡轮多学科耦合机理及分析方法研究[D]. 北京: 北京航空航天大学, 2019: 10-12.

    SHANG X Y. Research on the multidisciplinary coupling mechanism and analysis method of HP turbine[D]. Beijing: Beihang University, 2019: 10-12(in Chinese).
    [14] KAYS W M, CRAWFORD M E. Convective heat and mass transfer[M]. 3rd ed. New York: McGraw-Hill, 1993.
    [15] HISHIDA M, NAGANO Y, TAGAWA M. Transport processes of heat and momentum in the wall region//Proceedings of Eighth International Heat Transfer Conference, 1986: 925-930.
    [16] LIN Y, SPMG B, LI B, et al. Measured film cooling effectiveness of three multihole patterns[J]. Journal of Heat Transfer, 2006, 128(2): 192-197. doi: 10.1115/1.2137762
    [17] MARGASON R J. Fifty years of jet in cross flow researeh[C]//Proceedings of the AGARD Symposium on Computational and Experimental Assessment of Jets in Cross Flow, 1983: 41.
  • 加载中
图(23)
计量
  • 文章访问数:  933
  • HTML全文浏览量:  204
  • PDF下载量:  108
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-17
  • 录用日期:  2020-09-18
  • 网络出版日期:  2021-11-20

目录

    /

    返回文章
    返回
    常见问答