留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于代价敏感剪枝卷积神经网络的弹道目标识别

向前 王晓丹 宋亚飞 李睿 来杰 张国令

向前, 王晓丹, 宋亚飞, 等 . 基于代价敏感剪枝卷积神经网络的弹道目标识别[J]. 北京航空航天大学学报, 2021, 47(11): 2387-2398. doi: 10.13700/j.bh.1001-5965.2020.0437
引用本文: 向前, 王晓丹, 宋亚飞, 等 . 基于代价敏感剪枝卷积神经网络的弹道目标识别[J]. 北京航空航天大学学报, 2021, 47(11): 2387-2398. doi: 10.13700/j.bh.1001-5965.2020.0437
XIANG Qian, WANG Xiaodan, SONG Yafei, et al. Ballistic target recognition based on cost-sensitively pruned convolutional neural network[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(11): 2387-2398. doi: 10.13700/j.bh.1001-5965.2020.0437(in Chinese)
Citation: XIANG Qian, WANG Xiaodan, SONG Yafei, et al. Ballistic target recognition based on cost-sensitively pruned convolutional neural network[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(11): 2387-2398. doi: 10.13700/j.bh.1001-5965.2020.0437(in Chinese)

基于代价敏感剪枝卷积神经网络的弹道目标识别

doi: 10.13700/j.bh.1001-5965.2020.0437
基金项目: 

国家自然科学基金 61876189

国家自然科学基金 61503407

国家自然科学基金 61703426

国家自然科学基金 61806219

国家自然科学基金 61273275

陕西省高校科协青年人才托举计划 20190108

陕西省创新人才推进计划 2020KJXX-065

详细信息
    通讯作者:

    王晓丹, E-mail: afeu_wang@163.com

  • 中图分类号: TJ761.3;TP391.4

Ballistic target recognition based on cost-sensitively pruned convolutional neural network

Funds: 

National Natural Science Foundation of China 61876189

National Natural Science Foundation of China 61503407

National Natural Science Foundation of China 61703426

National Natural Science Foundation of China 61806219

National Natural Science Foundation of China 61273275

Young Talent Fund of University Association for Science and Technology in Shaanxi 20190108

Innovation Talent Supporting Project of Shaanxi 2020KJXX-065

More Information
  • 摘要:

    为降低弹道目标整体误识别代价,提出了基于代价敏感剪枝(CSP)一维卷积神经网络(1D-CNN)的弹道目标高分辨距离像识别方法。首先,基于彩票假设提出了同时以降低模型复杂度和误识别代价为目标的统一框架;然后,在此基础上,提出了基于人工蜂群算法的网络结构无梯度优化方法,以网络结构搜索的方式自动地寻找1D-CNN的代价敏感子网络,即代价敏感剪枝;最后,为了使代价敏感子网络在微调过程中仍以最小化误识别代价为目标,提出了一种代价敏感交叉熵(CSCE)损失函数对训练进行优化,使代价敏感子网络侧重对误识别代价较高的类别正确分类来进一步降低整体误识别代价。实验结果表明:结合CSP和CSCE损失函数的1D-CNN能在保持较高的识别正确率的前提下,相比传统的1D-CNN具有更低的整体误识别代价,且降低了50%以上的计算复杂度。

     

  • 图 1  1D-CNN整体结构

    Figure 1.  Architecture of 1D-CNN

    图 2  三阶段网络剪枝流程

    Figure 2.  Three-stage network pruning procedure

    图 3  仿真目标物理特征

    Figure 3.  Physical characteristics of simulated targets

    图 4  代价矩阵为M1时4种模型在不同数据集上的训练曲线

    Figure 4.  Training curves of four models in different datasets when cost matrix is M1

    图 5  代价矩阵为M1时4种模型在不同SNR数据集上的整体误识别代价

    Figure 5.  Total misrecognition cost of four models in different datasets with different SNR when cost matrix is M1

    图 6  代价矩阵为M1时超参数λ对实验结果的影响

    Figure 6.  Effects of hyper-parameter λ on experimental results when cost matrix is M1

    图 7  代价矩阵为M1时超参数α对实验结果的影响

    Figure 7.  Effects of hyper-parameter α on experimental results when cost matrix is M1

    表  1  数据集样本数量

    Table  1.   Sample number of datasets

    数据集 训练数据集各类样本数 测试数据集各类样本数
    弹头 高仿诱饵 简单诱饵 母舱 球形诱饵
    Im0 2 881 2 881 2 881 2 881 2 881 720
    Im1 2 305 2 449 2 593 2 737 2 881 720
    Im2 1 729 2 017 2 305 2 593 2 881 720
    Im3 1 152 1 729 2 305 2 593 2 881 720
    下载: 导出CSV

    表  2  四种方法的识别结果

    Table  2.   Recognition results of four methods

    代价矩阵 数据集 测试数据集整体误识别代价 测试数据集整体识别正确率/%
    CNN1D(CE) CNN1D(CSP+CE) CNN1D(CSCE) CNN1D(CSP+CSCE) CNN1D(CE) CNN1D(CSP+CE) CNN1D(CSCE) CNN1D(CSP+CSCE)
    M1 Im0 924.00±26.00 896.00±42.00 762.00±48.00 648.00±68.00 95.29±0.26 95.50±0.12 94.47±0.44 95.38±0.53
    Im1 830.00±52.00 1 016.00±28.00 762.00±14.00 742.00±18.00 95.50±0.35 95.50±0.70 94.74±0.12 95.47±0.09
    Im2 1 012.00±78.00 1 190.00±112.00 852.00±28.00 771.00±15.00 94.33±1.20 95.58±0.32 94.12±0.26 95.03±0.29
    Im3 1 527.00±17.00 1 574.00±110.00 1 012.00±62.00 857.00±128.00 92.98±0.82 93.60±0.56 93.51±0.23 93.92±0.82
    M2 Im0 142.05±10.45 176.20±5.00 142.10±12.60 136.75±6.25 95.76±0.03 95.96±0.18 94.50±0.41 94.88±0.03
    Im1 141.30±3.00 169.65±4.65 142.65±7.55 134.75±0.45 95.44±0.18 96.05±0.50 94.74±0.29 94.94±0.09
    Im2 175.85±9.25 197.70±15.30 151.20±3.20 143.60±8.80 95.35±0.03 95.32±0.06 94.24±0.20 94.50±0.12
    Im3 209.65±22.85 226.64±1.65 179.30±14.60 174.70±0.30 94.42±0.03 94.15±0.53 93.01±0.61 94.44±0.06
    M3 Im0 845.45±74.05 890.10±21.30 838.75±22.95 811.35±13.05 95.44±0.18 95.99±0.03 94.91±0.18 95.50±0.24
    Im1 803.70±50.40 968.15±13.45 939.15±42.55 769.65±32.15 95.88±0.44 96.26±0.18 94.30±0.32 95.85±0.12
    Im2 910.70±16.90 1 145.80±31.00 979.00±40.60 922.20±31.70 95.44±0.06 95.56±0.12 94.27±0.29 94.92±0.35
    Im3 1 342.00±71.00 1 346.75±29.85 1 155.10±122.30 1 122.25±4.75 94.12±0.20 94.39±0.18 93.36±0.67 93.42±0.15
    下载: 导出CSV

    表  3  三种指标下模型剪枝量百分比

    Table  3.   Pruned percentages of model under three metrics

    代价矩阵 数据集 浮点运算量/% 参数总数/% 通道总数/%
    M1 Im0 75.90±2.88 83.10±7.20 58.00±12.07
    Im1 65.93±11.19 80.99±5.56 60.13±4.73
    Im2 65.99±13.20 78.21±3.00 54.80±5.53
    Im3 65.58±9.18 70.43±6.63 48.43±7.77
    M2 Im0 61.89±13.20 54.58±10.18 35.60±7.00
    Im1 81.93±5.18 86.56±4.95 60.63±1.63
    Im2 53.74±3.46 57.30±7.38 34.50±6.37
    Im3 72.52±0.90 82.45±6.84 57.70±10.17
    M3 Im0 67.36±3.13 77.97±2.69 49.57±9.50
    Im1 67.21±5.24 83.97±5.20 61.87±4.07
    Im2 63.61±3.86 74.90±12.96 52.67±15.80
    Im3 62.81±3.58 69.81±10.60 45.73±13.73
    下载: 导出CSV
  • [1] PERSICO A R, ILIOUDIS C V, CLEMENTE C, et al. Novel classification algorithm for ballistic target based on HRRP frame[J]. IEEE Transactions on Aerospace and Electronic Systems, 2019, 55(6): 3168-3189. doi: 10.1109/TAES.2019.2905281
    [2] 赵振冲, 王晓丹. 引入拒识的最小风险弹道目标识别[J]. 西安交通大学学报, 2018, 52(4): 132-138. https://www.cnki.com.cn/Article/CJFDTOTAL-XAJT201804019.htm

    ZHAO Z C, WANG X D. A minimum risk recognition method of ballistic targets with rejection options[J]. Journal of Xi'an Jiaotong University, 2018, 52(4): 132-138(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XAJT201804019.htm
    [3] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[C]//Proceedings of the 25th International Conference on Neural Information Processing Systems, 2012, 1: 1097-1105.
    [4] CHEN W, WANG Y, SONG J, et al. Open set HRRP recognition based on convolutional neural network[J]. The Journal of Engineering, 2019, 19(21): 7701-7704. http://ieeexplore.ieee.org/document/8879042
    [5] GUO C, HE Y, WANG H P, et al. Radar HRRP target recognition based on deep one-dimensional residual-inception network[J]. IEEE Access, 2019, 7(2): 9191-9204. http://www.onacademic.com/detail/journal_1000041624730599_3db9.html
    [6] WAN J, CHEN B, XU B, et al. Convolutional neural networks for radar HRRP target recognition and rejection[J]. EURASIP Journal on Advances in Signal Processing, 2019, 5(19): 1-27. doi: 10.1186/s13634-019-0603-y
    [7] WEN Y, SHI L C, YU X, et al. HRRP target recognition with deep transfer learning[J]. IEEE Access, 2020, 8(22): 57859-57867. http://ieeexplore.ieee.org/document/9040527
    [8] XIANG Q, WANG X D, SONG Y F, et al. One-dimensional convolutional neural networks for high-resolution range profile recognition via adaptively feature recalibrating and automatically channel pruning[J]. International Journal of Intelligent Systems, 2021, 36(1): 332-361. doi: 10.1002/int.22302
    [9] SANTURKAR S, TSIPRAS D, ILYAS A, et al. How does batch normalization help optimization [EB/OL]. (2018-05-29)[2020-08-14]. https://arxiv.org/abs/1805.11604.
    [10] IOFFE S, SZEGEDY C. Batch normalization: Accelerating deep network training by reducing internal covariate shift[EB/OL]. (2015-02-11)[2020-08-14]. https://arxiv.org/abs/1502.03167.
    [11] MISRA D. Mish: A self regularized non-monotonic neural activation function[EB/OL]. (2019-08-23)[2020-08-14]. https://arxiv.org/abs/1908.08681.
    [12] GOHIL V, NARAYANAN S D, JAIN A. One ticket to win them all: Generalizing lottery ticket initializations across datasets and optimizers[EB/OL]. (2019-06-06)[2020-08-14]. https://arxiv.org/abs/1906.02773.
    [13] FRANKLE J, CARBIN M. The lottery ticket hypothesis: Finding sparse, trainable neural networks[EB/OL]. (2018-03-09)[2020-08-14]. https://arxiv.org/abs/1803.03635.
    [14] LIU Z, SUN M, ZHOU T, et al. Rethinking the value of network pruning[J/OL]. (2018-10-11)[2020-08-14]. https://arxiv.org/abs/1810.05270.
    [15] 李秋洁, 赵亚琴, 顾洲. 代价敏感学习中的损失函数设计[J]. 控制理论与应用, 2015, 32(5): 689-694. https://www.cnki.com.cn/Article/CJFDTOTAL-KZLY201505015.htm

    LI Q J, ZHAO Y Q, GU Z. Design of loss function for cost-sensitive learning[J]. Control Theory & Applications, 2015, 32(5): 689-694(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KZLY201505015.htm
    [16] 向前, 王晓丹, 李睿, 等. 基于DCNN的弹道中段目标HRRP图像识别[J]. 系统工程与电子技术, 2020, 42(11): 2426-2433. https://www.cnki.com.cn/Article/CJFDTOTAL-XTYD202011004.htm

    XIANG Q, WANG X D, LI R, et al. HRRP image recognition of midcourse ballistic targets based on DCNN[J]. Systems Engineering and Electronics, 2020, 42(11): 2426-2433(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XTYD202011004.htm
    [17] DUBEY S R, CHAKRABORTY S, ROY S K, et al. diffGrad: An optimization method for convolutional neural networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 55(2): 1-12. http://ieeexplore.ieee.org/document/8939562
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  500
  • HTML全文浏览量:  130
  • PDF下载量:  68
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-19
  • 录用日期:  2020-11-13
  • 网络出版日期:  2021-11-20

目录

    /

    返回文章
    返回
    常见问答