留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

地月空间的远距离逆行轨道族及其分岔研究

陈冠华 杨驰航 张晨 张皓

陈冠华, 杨驰航, 张晨, 等 . 地月空间的远距离逆行轨道族及其分岔研究[J]. 北京航空航天大学学报, 2022, 48(12): 2576-2588. doi: 10.13700/j.bh.1001-5965.2020.0608
引用本文: 陈冠华, 杨驰航, 张晨, 等 . 地月空间的远距离逆行轨道族及其分岔研究[J]. 北京航空航天大学学报, 2022, 48(12): 2576-2588. doi: 10.13700/j.bh.1001-5965.2020.0608
CHEN Guanhua, YANG Chihang, ZHANG Chen, et al. Distant retrograde orbits and its bifurcations in Earth-Moon system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(12): 2576-2588. doi: 10.13700/j.bh.1001-5965.2020.0608(in Chinese)
Citation: CHEN Guanhua, YANG Chihang, ZHANG Chen, et al. Distant retrograde orbits and its bifurcations in Earth-Moon system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(12): 2576-2588. doi: 10.13700/j.bh.1001-5965.2020.0608(in Chinese)

地月空间的远距离逆行轨道族及其分岔研究

doi: 10.13700/j.bh.1001-5965.2020.0608
基金项目: 

国家重点研发计划 2018YFB1900605

中国科学院重点部署项目 ZDRW-KT-2019-1-0102

详细信息
    通讯作者:

    张皓, E-mail: hao.zhang.zhr@csu.ac.cn

  • 中图分类号: P173.1;P173.3;P132+.2;V412

Distant retrograde orbits and its bifurcations in Earth-Moon system

Funds: 

National Key R & D Program of China 2018YFB1900605

Key Research Program of the Chinese Academy of Sciences(CAS) ZDRW-KT-2019-1-0102

More Information
  • 摘要:

    地月系统中存在着一类绕月逆行、高度稳定的轨道族,称为远距离逆行轨道族(DRO)。以圆型限制性三体问题(CR3BP)为动力学模型研究了DRO轨道族周边的动力系统结构。利用Broucke稳定性图寻找分叉点,判断分叉类型,基于数值延拓计算分岔后产生的一系列新轨道分支。分叉类型主要有切分叉与多倍周期分叉(从3倍周期开始),轨道维度包含平面轨道族与三维轨道族。计算新轨道族的特征,包括形状、周期、能量、稳定性、双曲流形结构等。探讨周期轨道的轨道周期与能量的关系,以几何化的方式展现分叉结构、多周期轨道的双曲流形结构等。该动力结构将为基于DRO轨道族的地月空间任务提供重要的理论支持。

     

  • 图 1  圆型限制性三体问题

    Figure 1.  Circular restricted three-body problem

    图 2  稳定性图[26]

    Figure 2.  Stability diagram[26]

    图 3  地月空间DRO

    Figure 3.  DRO in Earth-Moon system

    图 4  DRO稳定性指数

    Figure 4.  Stability indices of DRO

    图 5  DRO轨道族的Broucke稳定性图

    Figure 5.  Broucke stability diagram of DRO family

    图 6  三维DRO

    Figure 6.  3D DRO

    图 7  三维DRO的稳定性指数

    Figure 7.  Stability indices of 3D DRO

    图 8  P3DRO

    Figure 8.  P3DRO

    图 9  P3DRO的几何特性

    Figure 9.  Geometric properties of P3DRO

    图 10  P3DRO的稳定性指数

    Figure 10.  Stability indices of P3DRO

    图 11  P4DRO分支1的延拓及其稳定性指数

    Figure 11.  Stability indices of P4DRO-1

    图 12  P4DRO分支2的延拓及其稳定性指数

    Figure 12.  Stability indices of P4DRO-2

    图 13  P5DRO平面分支1的延拓及其稳定性指数

    Figure 13.  Stability indices of 2D-P5DRO-1

    图 14  P5DRO平面分支2的延拓及其稳定性指数

    Figure 14.  Stability indices of 2D-P5DRO-2

    图 15  P5DRO三维分支1的延拓及其稳定性指数

    Figure 15.  Stability indices of P5DRO-3D-1

    图 16  P5DRO三维分支2的延拓及其稳定性指数

    Figure 16.  Stability indices of P5DRO-3D-2

    图 17  同一能量对应多个P5DRO

    Figure 17.  Different P5DRO with same Jacobi energy

    图 18  不同稳定性指数下的稳定流形

    Figure 18.  Manifold in different stability indices

    图 19  不同稳定性指数下的稳定流形(J=3.003 5, vmax=6.634 4)

    Figure 19.  Manifold in different stability indices (J=3.003 5, vmax=6.634 4)

    图 20  y=0截面处二维P3DRO的稳定流形(J=2.58, vmax=55.495 2)

    Figure 20.  Manifold section of 2D P3DRO in y=0 section (J=2.58, vmax=55.495 2)

    图 21  x=1-μ截面处三维P5DRO的稳定流形(J=3.003 5, vmax=6.634 4)

    Figure 21.  Manifold section of 3D P5DRO in x=1-μ section(J=3.003 5, vmax=6.634 4)

    图 22  分岔图

    Figure 22.  Bifurcation chart

    图 23  能量-周期关系

    Figure 23.  Relationship between energy and period

    图 24  P5DRO的能量-周期关系放大图

    Figure 24.  Relationship between energy and period of P5DRO and its local magnification

    表  1  分岔类型[25-28]

    Table  1.   Bifurcation type[25-28]

    分岔类型 方程 稳定性
    切分岔 β=-2α-2 变化
    2倍周期分岔 β=2α-2 变化
    3倍周期分岔 β=α+1 不变
    4倍周期分岔 β=2 不变
    5倍周期分岔 β=α/(2cos(4π/5))-(cos(8π/5)+1)/cos(4π/5)β=α/(2cos(8π/5))-(cos(16π/5)+1)/cos(8π/5) 不变
    二次Hopf分岔 β=α2/4+2,-4 < α < 4 变化
    修正二次Hopf分岔 β=α2/4+2,α∈[-∞, -4]∪[4, ∞] 不变
    下载: 导出CSV
  • [1] STRANGE N, LANDAU D, MCELRATH T, et al. Overview of mission design for NASA asteroid redirect robotic mission concept[C] // 3rd International Electric Propulsion Conference, 2013: 1-12.
    [2] HAMBLETON K. Deep space gateway to open opportunities for distant destinations[EB/OL]. (2018-04-25)[2020-10-27]. https://www.nasa.gov/feature/deep-space-gateway-to-open-opportunities-for-distant-destinations/.
    [3] GATES M, MUIRHEAD B, NAASZ B, et al. NASA's asteroid redirect mission concept development summary[C] // 2015 IEEE Aerospace Conference. Piscataway: IEEE Press, 2015: 1-13.
    [4] BEZROUK C J, PARKER J. Long duration stability of distant retrograde orbits[C] // AIAA/AAS Astrodynamics Specialist Conference. Reston: AIAA, 2014: 4424.
    [5] BEZROUK C J, PARKER J. Long term evolution of distant retrograde orbits in the Earth-Moon system[J]. Astrophysics and Space Science, 2017, 362(9): 176. doi: 10.1007/s10509-017-3158-0
    [6] 彭超, 温昶煊, 高扬. 地月空间DRO与HEO (3: 1 / 2: 1) 共振轨道延拓求解及其稳定性分析[J]. 载人航天, 2018, 24(6): 703-718. doi: 10.3969/j.issn.1674-5825.2018.06.001

    PENG C, WEN C X, GAO Y. Solution and stability analysis of resonance orbits of DRO and HEO (3: 1 / 2: 1) in Earth Moon space[J]. Manned Spaceflight, 2018, 24(6): 703-718(in Chinese). doi: 10.3969/j.issn.1674-5825.2018.06.001
    [7] 吴小婧, 曾凌川, 巩应奎. DRO计算及其在地月系中的摄动力研究[J]. 北京航空航天大学学报, 2020, 46(5): 48-57. doi: 10.13700/j.bh.1001-5965.2019.0353

    WU X J, ZENG L C, GONG Y K. DRO calculation and its perturbation in the Earth-Moon system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(5): 48-57(in Chinese). doi: 10.13700/j.bh.1001-5965.2019.0353
    [8] CHEN H R, CANALIAS E, HESTROFFER D, et al. Effective stability of quasi-satellite orbits in the spatial problem for Phobos exploration[J]. Journal of Guidance, Control, and Dynamics, 2020, 43(12): 1-12. doi: 10.2514/1.G002893.c1
    [9] CAPDEVILA L R, GUZZETTI D, HOWELL K C. Various transfer options from Earth into distant retrograde orbits in the vicinity of the Moon[J]. Advances in the Astronautical Sciences, 2014, 152: 3659-3678.
    [10] CAPDEVILA L R, HOWELL K C. A transfer network linking Earth, Moon, and the triangular libration point regions in the Earth-Moon system[J]. Advances in Space Research, 2018, 62(7): 1826-1852. doi: 10.1016/j.asr.2018.06.045
    [11] ZHANG R K, WANG Y, ZHANG H, et al. Transfers from distant retrograde orbits to low lunar orbits[J]. Celestial Mechanics and Dynamical Astronomy, 2020, 132(8): 1-30.
    [12] 曾豪, 李朝玉, 彭坤, 等. 地月空间NRHO与DRO在月球探测中的应用研究[J]. 宇航学报, 2020, 41(7): 910-919. https://www.cnki.com.cn/Article/CJFDTOTAL-YHXB202007010.htm

    ZENG H, LI C Y, PENG K, et al. Application of Earth Moon space NRHO and DRO in lunar exploration[J]. Journal of Astronautics, 2020, 41(7): 910-919(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YHXB202007010.htm
    [13] CAVALLARI I, PETITDEMANGE R, LIZY-DESTREZ S. Transfer from a lunar distant retrograde orbit to Mars through Lyapunov orbits[C]//27th International Symposium on Space Flight Dynamics (ISSFD). Melbourne: Engineers Australia Press, Royal Aeronautical Society, 2019: 1393-1398.
    [14] CONTE D, SPENCER D B. Mission analysis for Earth to Mars-Phobos distant retrograde orbits[J]. Acta Astronautica, 2018, 151: 761-771. doi: 10.1016/j.actaastro.2018.06.049
    [15] SCOTT C J, SPENCER D B. Calculating transfer families to periodic distant retrograde orbits using differential correction[J]. Journal of Guidance, Control, and Dynamics, 2010, 33(5): 1592-1605. doi: 10.2514/1.47791
    [16] OCAMPO C A, ROSBOROUGH G W. Transfer trajectories for distant retrograde orbits of the Earth[R]. [S. l. ]: NASA STI/Recon Technical Report A, 1993, 95: 1323-1337.
    [17] 徐明, 徐世杰. 绕月飞行的大幅值逆行轨道研究[J]. 宇航学报, 2009, 30(5): 1785-1791. https://www.cnki.com.cn/Article/CJFDTOTAL-YHXB200905006.htm

    XU M, XU S J. Exploration of distant retrograde orbits around Moon[J]. Journal of Astronautics, 2009, 30(5): 1785-1791(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YHXB200905006.htm
    [18] WANG W B, SHU L Z, LIU J K, et al. Joint navigation performance of distant retrograde orbits and cislunar orbits via LiAISON considering dynamic and clock model errors[J]. Navigation, 2019, 66(4): 781-802.
    [19] LAM T, WHIFFEN G J. Exploration of distant retrograde orbits around Europa[C] //15th AAS/AIAA Space Flight Mechanics Meeting. Reston: AIAA, 2005.
    [20] WALLACE M, PARKER J, STRANGE N, et al. Orbital operations for Phobos and Deimos exploration[C] // AIAA/AAS Astrodynamics Specialist Conference. Reston: AIAA, 2012: 5067.
    [21] GIL P J S, SCHWARTZ J. Simulations of quasi-satellite orbits around Phobos[J]. Journal of Guidance, Control, and Dynamics, 2010, 33(3): 901-914.
    [22] 赵育善, 师鹏, 张晨. 深空飞行动力学[M]. 北京: 中国宇航出版社, 2016: 131-157.

    ZHAO Y S, SHI P, ZHANG C. Dynamics of deep space flight[M]. Beijing: China Aerospace Publishing House, 2016: 131-157(in Chinese).
    [23] KOON W S, LO W Y, MARSDEN J E, et al. Dynamical systems, the three-body problem and space mission design[C] //International Conference on Differential Equations, 2000: 1167-1181.
    [24] MOON F C. Nonlinear dynamics[M]//MEYERS R A. Encyclopedia of physical science and technology. 3rd ed. Amsterdam: Elsevier, 2003: 523-535.
    [25] HOWELL K C, CAMPBELL E T. Three-dimensional periodic solutions that bifurcate from halo families in the circular restricted three-body problem[J]. Advances in the Astronatical Sciences, 1999, 102: 891-910.
    [26] ZIMOVAN-SPREEN E M, HOWELL K C, DAVIS D C. Near rectilinear halo orbits and nearby higher-period dynamical structures: Orbital stability and resonance properties[J]. Celestial Mechanics and Dynamical Astronomy, 2020, 132(5): 1-25.
    [27] DOUSKOS C, KALANTONIS V, MARKELLOS P. Effects of resonances on the stability of retrograde satellites[J]. Astrophysics and Space Science, 2007, 310(3-4): 245-249.
    [28] WINTER O C. The stability evolution of a family of simply periodic lunar orbits[J]. Planetary and Space Science, 2000, 48(1): 23-28.
    [29] CAMPBELL E T. Bifurcations from families of periodic solutions in the circular restricted problem with application to trajectory design[D]. West Lafayette: Purdue University, 1999.
    [30] BOSANAC N. Leveraging natural dynamical structures to explore multi-body systems[D]. West Lafayette: Purdue University, 2016.
  • 加载中
图(24) / 表(1)
计量
  • 文章访问数:  690
  • HTML全文浏览量:  156
  • PDF下载量:  112
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-30
  • 录用日期:  2021-01-22
  • 网络出版日期:  2021-02-24
  • 整期出版日期:  2022-12-20

目录

    /

    返回文章
    返回
    常见问答