留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

分离式飞机应急数据记录跟踪系统设计与试验

张延泰 孙建红 侯斌 王一波

张延泰, 孙建红, 侯斌, 等 . 分离式飞机应急数据记录跟踪系统设计与试验[J]. 北京航空航天大学学报, 2021, 47(11): 2322-2330. doi: 10.13700/j.bh.1001-5965.2020.0624
引用本文: 张延泰, 孙建红, 侯斌, 等 . 分离式飞机应急数据记录跟踪系统设计与试验[J]. 北京航空航天大学学报, 2021, 47(11): 2322-2330. doi: 10.13700/j.bh.1001-5965.2020.0624
ZHANG Yantai, SUN Jianhong, HOU Bin, et al. Design and test of the ejection emergency flight data recording and tracking system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(11): 2322-2330. doi: 10.13700/j.bh.1001-5965.2020.0624(in Chinese)
Citation: ZHANG Yantai, SUN Jianhong, HOU Bin, et al. Design and test of the ejection emergency flight data recording and tracking system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(11): 2322-2330. doi: 10.13700/j.bh.1001-5965.2020.0624(in Chinese)

分离式飞机应急数据记录跟踪系统设计与试验

doi: 10.13700/j.bh.1001-5965.2020.0624
基金项目: 江苏高校优势学科建设工程
详细信息
    通讯作者:

    孙建红, E-mail: jhsun@nuaa.edu.cn

  • 中图分类号: V244.2

Design and test of the ejection emergency flight data recording and tracking system

Funds: Priority Academic Program Development of Jiangsu Higher Education Institutions
More Information
  • 摘要:

    分离式飞机应急数据记录跟踪系统具备智能弹射与分离、拖曳式跟踪拍摄、缓降与应急漂浮和数据传输等功能,针对弹射和缓降等过程进行了系统设计和无人机试验验证。同时,针对伞-囊组合体的特点,分析了气囊尾流区中伞衣阻力系数的变化规律。结果表明:气囊半径和伞衣名义直径是影响伞衣阻力系数的主要因素;伞衣阻力系数随气囊半径增大而下降,随伞衣名义直径增大而上升;在气动力分析和数值模拟的基础上,确定了伞衣阻力系数的计算公式。无人机试验完成各项设计功能,系统整体方案合理可行,为后续工程应用提供了重要参考。

     

  • 图 1  分离式飞机应急数据记录跟踪系统工作原理

    Figure 1.  Schematic diagram of ejection emergency flight data recording and tracking system

    图 2  系统安装位置、机身下方气流流向与伞运动轨迹

    Figure 2.  System installation location, air flow direction below the fuselage and parachute trajectory

    图 3  弹射系统主要结构示意图

    Figure 3.  Schematic of ejection system with main components

    图 4  部分设计参数关联图

    Figure 4.  Relation map of partial design parameters

    图 5  气囊结构示意图

    Figure 5.  Schematic of airbag structure

    图 6  伞与气囊示意图

    Figure 6.  Schematic of parachute and airbag

    图 7  伞衣阻力系数随伞衣名义直径的变化

    Figure 7.  Variation of canopy drag coefficient with canopy nominal diameter

    图 8  伞-囊组合体对称面压力云图

    Figure 8.  Pressure contours of parachute-airbag symmetrical plane

    图 9  伞-囊组合体对称面Lamb矢量散度云图

    Figure 9.  Lamb vector divergence contours of parachute-airbag symmetrical plane

    图 10  剪切层的涡量厚度沿流向分布

    Figure 10.  Streamwise distribution of vorticity thickness inside shear layer

    图 11  不同工况下伞衣阻力系数随气囊半径、长度和伞衣名义直径的变化

    Figure 11.  Variation of canopy drag coefficient with radius and length of airbag and canopy nominal diameter in different working cases

    图 12  伞衣名义直径对伞衣阻力系数的影响

    Figure 12.  Influence of canopy nominal diameters on canopy drag coefficient

    图 13  无人机和HBG囊-伞系统

    Figure 13.  Unmanned aerial vehicle and HBG parachute-airbag system

    图 14  HBG系统坠地试验

    Figure 14.  Ground impact testing of HBG system

    图 15  HBG系统坠水试验

    Figure 15.  Impact testing on water surface of HBG system

  • [1] WISEMAN Y. Unlimited and protected memory for flight data recorders[J]. Aircraft Engineering and Aerospace Technology, 2016, 88(6): 866-872. doi: 10.1108/AEAT-06-2015-0152
    [2] LIANG G, WAN G, WANG J, et al. A novel underwater location beacon signal detection method based on mixing and normalizing stochastic resonance[J]. Sensors, 2020, 20(5): 1292. doi: 10.3390/s20051292
    [3] LI L, DAS S, JOHN H R, et al. Analysis of flight data using clustering techniques for detecting abnormal operations[J]. Journal of Aerospace Information Systems, 2015, 12(9): 587-598. doi: 10.2514/1.I010329
    [4] 王伟, 费益. 民用飞机飞行记录系统研究[J]. 电光与控制, 2013, 20(3): 73-76. doi: 10.3969/j.issn.1671-637X.2013.03.017

    WANG W, FEI Y. Flight recording system of civil aircraft[J]. Electronics Optics & Control, 2013, 20(3): 73-76(in Chinese). doi: 10.3969/j.issn.1671-637X.2013.03.017
    [5] ZHU M Y, ZHAO Y F, ZHANG C, et al. High precision positioning for searching airborne black boxes underwater based on acoustic orbital angular momentum[C]//2018 IEEE/AIAA 37th Digital Avionics Systems Conference (DASC). Piscataway: IEEE Press, 2018: 1-9.
    [6] LIU W Y, RICHARD J, CHEN C F. Underwater positioning study of flight recorder[C]//2019 IEEE Underwater Technology (UT). Piscataway: IEEE Press, 2019: 1-5.
    [7] WANG S S, HUNG H S, HO J J, et al. Improving detection technique for flight recorders of the distress airplanes crashed into ocean by integrating inertial navigation system into underwater locator beacon[J]. Journal of Marine Science and Technology, 2015, 23(4): 467-474.
    [8] COLL G T, PELLEGRINO J F, PILCHUK J. Black box: Improving aircraft safety by bringing the black box from the bottom of the sea to outer space[C]//AIAA Space and Astronautics Forum and Exposition. Reston: AIAA, 2017: 5130.
    [9] WANG Y, WAN K, ZHANG C, et al. Optimized real-time flight data streaming via air-to-air links for civil aviation[C]//2019 IEEE International Conference on Communications (ICC). Piscataway: IEEE Press, 2019: 1-6.
    [10] QIN H, KONG X, SHU P. Real-time downloading and analysis of QAR data using air-to-ground wireless communication[C]//2019 IEEE 1st International Conference on Civil Aviation Safety and Information Technology (ICCASIT). Piscataway: IEEE Press, 2019: 519-524.
    [11] YE W, SUN J H. Emergency mechanical and communication systems and methods for aircraft: U.S. Patent 9[P]. 2016-09-13.
    [12] 张晓敏. 民机坠撞事故分析及典型吸能结构特性研究[D]. 天津: 中国民航大学, 2013: 7-21.

    ZHANG X M. Civil aircraft crash accidents analysis and typical energy-absorbing structure characteristics research[D]. Tianjin: Civil Aviation University of China, 2013: 7-21(in Chinese).
    [13] SEIGEL A E. The theory of high speed guns: AD0475660[R]. France: Advisory Group for Aerospace Research and Development, 1964.
    [14] US Department of Defense. Package cushioning design: MIL-HDBK-304 A-1974[S]. Washington, D.C. : US Department of Defense, 1974.
    [15] 雷江利, 荣伟, 贾贺, 等. 国外新一代载人飞船减速着陆技术研究[J]. 航天器工程, 2017, 26(1): 100-109. doi: 10.3969/j.issn.1673-8748.2017.01.015

    LEI J L, RONG W, JIA H, et al. Resrarch on descent and landing technology for new generation manned spacecraft[J]. Spacecraft Engineering, 2017, 26(1): 100-109(in Chinese). doi: 10.3969/j.issn.1673-8748.2017.01.015
    [16] 王利荣. 降落伞理论与应用[M]. 北京: 宇航出版社, 1997: 82-83.

    WANG L R. Parachute theory and application[M]. Beijing: Astronautics Publishing House, 1997: 82-83(in Chinese).
    [17] 孙建红, 周涛, 李名琦, 等. 直升机应急气囊充气及冲击着水过程数值分析[J]. 南京航空航天大学学报, 2012, 44(5): 713-717. doi: 10.3969/j.issn.1005-2615.2012.05.017

    SUN J H, ZHOU T, LI M Q, et al. Numerical analysis of emergent airbag deployment and ditching crashworthiness process[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2012, 44(5): 713-717(in Chinese). doi: 10.3969/j.issn.1005-2615.2012.05.017
    [18] 王一波, 孙建红, 侯斌, 等. 小型电子设备着陆缓冲气囊的缓冲性能分析[J]. 航天返回与遥感, 2018, 39(5): 25-33. doi: 10.3969/j.issn.1009-8518.2018.05.004

    WANG Y B, SUN J H, HOU B, et al. Cushioning performance analysis of landing buffer airbag for small electronic equipment[J]. Spacecraft Recovery & Remote Sensing, 2018, 39(5): 25-33(in Chinese). doi: 10.3969/j.issn.1009-8518.2018.05.004
    [19] HUANG D Z, AVERY P, FARHAT C, et al. Modeling, simulation and validation of supersonic parachute inflation dynamics during Mars landing[EB/OL]. (2020-01-06)[2020-10-11]. https://arxiv.org/abs/1912.01658.
    [20] SHPUND Z, LEVIN D. Forebody influence on rotating parachute aerodynamic properties[J]. Journal of Aircraft, 1997, 34(2): 181-186. doi: 10.2514/2.2170
    [21] TANG J, QIAN L. Numerical study of forebody wake effect on axisymmetric parachute opening shock and drag reduction[J]. Mathematical and Computer Modelling of Dynamical Systems, 2016, 22(2): 141-159. doi: 10.1080/13873954.2016.1149492
    [22] HAMMAN C W, KLEWICKIl J C, KIRBY R M. On the Lamb vector divergence in Navier-Stokes flows[J]. Journal of Fluid Mechanics, 2008, 610: 261-284. doi: 10.1017/S0022112008002760
    [23] FANG M, SUN J H, ZHANG T, et al. Flow characteristics of double-cruciform parachute at inflating and inflated conditions[J]. Transactions of Nanjing University of Aeronautics & Astronautics, 2018, 35(6): 992-999. http://www.cqvip.com/QK/85388X/201806/7001106903.html
    [24] 许常悦, 郑静, 王哲, 等. 方柱跨声速流动中的剪切层和尾迹特性[J]. 上海交通大学学报, 2020, 55(4): 9. https://www.cnki.com.cn/Article/CJFDTOTAL-SHJT202104008.htm

    XU C Y, ZHENG J, WANG Z, et al. The shear layer and wake characteristics of square cylinder in the transonic flow[J]. Journal of Shanghai Jiaotong University, 2020, 55(4): 9(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SHJT202104008.htm
    [25] 刘学翱, 吴宏宇, 王春洁, 等. 着陆器变阻尼缓冲器性能分析及参数优化[J]. 北京航空航天大学学报, 2018, 44(10): 2149-2155. doi: 10.13700/j.bh.1001-5965.2017.0805

    LIU X A, WU H Y, WANG C J, et al. Performance analysis and parameter optimization of lander with variable damping buffer[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(10): 2149-2155(in Chinese). doi: 10.13700/j.bh.1001-5965.2017.0805
    [26] 刘帅, 王占学, 周莉, 等. 基于响应面法的短距/垂直起降飞机近地面升力损失[J]. 航空动力学报, 2017, 32(4): 874-881. https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201704014.htm

    LIU S, WANG Z X, ZHOU L, et al. Lift loss of short/vertical takeoff and landing aircraft proximity of ground base on response surface method[J]. Journal of Aerospace Power, 2017, 32(4): 874-881(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201704014.htm
  • 加载中
图(15)
计量
  • 文章访问数:  410
  • HTML全文浏览量:  63
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-09
  • 录用日期:  2021-01-08
  • 网络出版日期:  2021-11-20

目录

    /

    返回文章
    返回
    常见问答