留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

红外低轨星座突发任务多重策略调度方法

张晟宇 朱振才 胡海鹰

张晟宇, 朱振才, 胡海鹰等 . 红外低轨星座突发任务多重策略调度方法[J]. 北京航空航天大学学报, 2022, 48(12): 2405-2414. doi: 10.13700/j.bh.1001-5965.2021.0119
引用本文: 张晟宇, 朱振才, 胡海鹰等 . 红外低轨星座突发任务多重策略调度方法[J]. 北京航空航天大学学报, 2022, 48(12): 2405-2414. doi: 10.13700/j.bh.1001-5965.2021.0119
ZHANG Shengyu, ZHU Zhencai, HU Haiyinget al. Burst tasks scheduling method for infrared LEO constellation based on multi-strategies[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(12): 2405-2414. doi: 10.13700/j.bh.1001-5965.2021.0119(in Chinese)
Citation: ZHANG Shengyu, ZHU Zhencai, HU Haiyinget al. Burst tasks scheduling method for infrared LEO constellation based on multi-strategies[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(12): 2405-2414. doi: 10.13700/j.bh.1001-5965.2021.0119(in Chinese)

红外低轨星座突发任务多重策略调度方法

doi: 10.13700/j.bh.1001-5965.2021.0119
详细信息
    通讯作者:

    张晟宇, E-mail: zhangsy@microsate.com

  • 中图分类号: V19

Burst tasks scheduling method for infrared LEO constellation based on multi-strategies

More Information
  • 摘要:

    面向红外低轨星座的突发任务规划与资源调度问题,结合红外低轨星座的空间与时间分布特性,提出一种基于多重策略的红外低轨星座任务应急调度方法。所提方法结合红外低轨星座的设计特点,从星座全球分布的均匀性、结构的对称性及星座内卫星运动的周期性分析作为输入,提出一种以地理分区为长期值守分组策略与事件触发下基于相对运动分析的动态快速分组策略相结合的多重策略。在所提策略指导下完成任务分组,开展工作窗口调度。经仿真分析可得:所提策略可有效应对不同区域的目标触发,并实时完成分组及工作窗口规划调度,较好解决了任务突发情况下的系统响应,由于采用优先分组的策略,降低了全局优化的复杂度,具有创新性,且具备较好的应用价值。

     

  • 图 1  红外低轨星座空域覆盖示意图

    Figure 1.  Schematic of infrared LEO constellation spatial coverage

    图 2  立体观测工作模式

    Figure 2.  Stereo observation mode

    图 3  空域覆盖地面投影示意图

    Figure 3.  Terrestrial projection of spatial coverage

    图 4  星座的覆盖投影分析

    Figure 4.  Project analysis of spatial coverage

    图 5  星间链路示意图

    Figure 5.  Inter satellite link

    图 6  全球分区示意图

    Figure 6.  Global surveillance area

    图 7  任务调度流程

    Figure 7.  Scheduling procedure

    图 8  目标1轨道面与卫星筛选结果

    Figure 8.  Selection of orbit plans and satellites for Target 1

    图 9  目标2轨道面与卫星筛选结果

    Figure 9.  Selection of orbit plans and satellites for Target 2

    图 10  目标3轨道面与卫星筛选结果

    Figure 10.  Selection of orbit plans and satellites for Target 3

    图 11  目标1、2、3可见窗口

    Figure 11.  Access windows for Target 1, 2, 3

    图 12  目标1、2、3观测窗口

    Figure 12.  Task windows for Target 1, 2, 3

    表  1  仿真参数设置

    Table  1.   Simulation configuration parameters

    参数 数值/km
    临边高度Ha 80
    最大探测距离L 6 000
    星间链路保护高度Hc 100
    目标高度分布区间 200~2 000
    下载: 导出CSV

    表  2  卫星Satellite1轨道参数

    Table  2.   Orbital parameters of Satellite 1

    参数 数值
    半长轴/km 7 878.14
    离心率 5.829 68×10-19
    轨道倾角/(°) 60
    升交点赤经/(°) 2.398 26×10-17
    近地点幅角/(°) 0
    真近点角/(°) 0
    下载: 导出CSV

    表  3  目标初始位置

    Table  3.   Targets initial position

    目标点 经度/(°) 纬度/(°) 高度/km
    目标1点1 -19.203 -38.226 121.496
    目标1点2 -19.931 -38.120 151.018
    目标2点1 -25.591 21.137 128.224
    目标2点2 -25.691 20.675 158.993
    目标3点1 -123.993 11.633 133.284
    目标3点2 -124.377 11.509 164.877
    下载: 导出CSV

    表  4  权重设置

    Table  4.   Weight configuration

    参数 数值
    相对角度权重wra 0.15
    距离权重wdis 0.65
    不可观测区域权重wbd 0.2
    观测时间权重wp 0.85
    开始时间权重wst 0.15
    下载: 导出CSV
  • [1] GUO C, XIONG W, LIU C X. Research on emergency mission planning of earth observation satellites[C]//Proceedings of the 1st IEEE International Conference on Computer Communication and the Internet. Piscataway: IEEE Press, 2016: 210-214.
    [2] HU J, HUANG H, YANG L, et al. A multi-objective optimization framework of constellation design for emergency observation[J]. Advances in Space Research, 2021, 67: 531-545. doi: 10.1016/j.asr.2020.09.031
    [3] 陈书剑, 李智, 胡敏, 等. 应急任务响应时间最优的多星成像规划方法[J]. 中国空间科学技术, 2020, 40(2): 17-28. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKJ202002004.htm

    CHEN S J, LI Z, HU M, et al. Multi-satellite imaging planning method with optimal response time for emergency tasks[J]. Chinese Space Science and Technology, 2020, 40(2): 17-28(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKJ202002004.htm
    [4] 贺仁杰, 高鹏, 白保存, 等. 成像卫星任务规划模型、算法及其应用[J]. 系统工程理论与实践, 2011, 31(3): 411-422. https://www.cnki.com.cn/Article/CJFDTOTAL-XTLL201103005.htm

    HE R J, GAO P, BAI B C, et al. Models, algorithms and applications to the mission planning system of imaging satellites[J]. System Engineering Theory and Practice, 2011, 31(3): 411-422(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XTLL201103005.htm
    [5] HAN P, HE Z W, GENG Y Z, et al. Mission planning for agile earth observing satellite based on genetic algorithm[C]//Proceedings of the 38th Chinese Control Conference. Piscataway: IEEE Press, 2019: 564-569.
    [6] 张晟宇, 孙煜坤, 朱振才, 等. 启发式前后向链条优化组合在轨多目标观测规划算法[J]. 系统工程与电子技术, 2021, 43(5): 1262-1269. https://www.cnki.com.cn/Article/CJFDTOTAL-XTYD202105014.htm

    ZHANG S Y, SUN Y K, ZHU Z C, et al. Heuristic optimized forward-backward chains combination method for on-board multi-targets observation planning[J]. Systems Engineering and Electronics, 2021, 43(5): 1262-1269(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XTYD202105014.htm
    [7] HE L, LIU X L, LAPORTE G, et al. An improved adaptive large neighborhood search algorithm for multiple agile satellites scheduling[J]. Computers & Operations Research, 2018, 100: 12-25.
    [8] 姜维, 庞秀丽, 郝会成. 成像卫星协同任务规划模型与算法[J]. 系统工程与电子技术, 2013, 35(10): 2093-2101. doi: 10.3969/j.issn.1001-506X.2013.10.13

    JIANG W, PANG X L, HAO H C. Collaborative scheduling model and algorithm for imaging satellite network[J]. Systems Engineering and Electronics, 2013, 35(10): 2093-2101(in Chinese). doi: 10.3969/j.issn.1001-506X.2013.10.13
    [9] 陈金勇, 张超, 李艳斌. 基于超启发式的多星协同任务规划算法研究[J]. 中国电子科学研究院学报, 2018, 13(3): 254-259. doi: 10.3969/j.issn.1673-5692.2018.03.004

    CHEN J Y, ZHANG C, LI Y B. Multi-star cooperative task planning based on hyper-heuristic algorithm[J]. Journal of China Academy of Electronics and Information Technology, 2018, 13(3): 254-259(in Chinese). doi: 10.3969/j.issn.1673-5692.2018.03.004
    [10] YAO F, LI J T, CHEN Y N, et al. Task allocation strategies for cooperative task planning of multi-autonomous satellite constellation[J]. Advances in Space Research, 2019, 63: 1073-1084. doi: 10.1016/j.asr.2018.10.002
    [11] YU Y, HOU Q, ZHANG J, et al. Mission scheduling optimization of multi-optical satellites for multi-aerial targets staring surveillance[J]. Journal of the Franklin Institute, 2020, 357: 8657-8677. doi: 10.1016/j.jfranklin.2020.06.023
    [12] 孙立远, 熊伟. 基于补偿跟踪的低轨预警资源调度方法研究[J]. 装备学院学报, 2015, 26(3): 74-80. https://www.cnki.com.cn/Article/CJFDTOTAL-XYZH201503021.htm

    SUN L Y, XIONG W. Scheduling method of LEO early warning resources based on tracking compensation[J]. Journal of Equipment Academy, 2015, 26(3): 74-80(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XYZH201503021.htm
    [13] 刘闻, 王晓路, 汪宏昇, 等. 基于Agent的低轨预警卫星星座探测仿真分析[J]. 系统仿真学报, 2019, 31(11): 2413-2421. https://www.cnki.com.cn/Article/CJFDTOTAL-XTFZ201911028.htm

    LIU W, WANG X L, WANG H S, et al. Agent based modeling and simulation analysis of LEO early-warning satellites[J]. Journal of System Simulation, 2019, 31(11): 2413-2421(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XTFZ201911028.htm
    [14] BUDIANTO I A, OLDS J R. A collaborative optimization approach to design and deployment of a space based infrared system constellation[C] // Conference. Piscataway: IEEE Press, 2000: 879415.
    [15] SHTARK T, GURFIL P. Low earth orbit satellite constellation for regional positioning with prolonged coverage durations[J]. Advances in Space Research, 2019, 63: 2469-2494.
    [16] 任俊亮, 邢清华, 李龙跃. 局部空域覆盖的回归轨道预警星座设计方法[J]. 现代防御技术, 2016, 44(3): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-XDFJ201603001.htm

    REN J L, XING Q H, LI L Y. Method on designing a part airspace covered early warning constellation in recursive orbit[J]. Morden Defence Technology, 2016, 44(3): 1-6(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XDFJ201603001.htm
    [17] 田野, 李海岩, 秦国政, 等. 中低轨预警卫星覆盖效能与定位精度分析[J]. 兵工自动化, 2019, 38(7): 43-51. https://www.cnki.com.cn/Article/CJFDTOTAL-BGZD201907012.htm

    TIAN Y, LI H Y, QIN G Z, et al. Analysis of MEO and LEO early warning satellites: Coverage capability and positioning accuracy[J]. Ordnance Industry Automation, 2019, 38(7): 43-51(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-BGZD201907012.htm
    [18] CHEN Y, ZHAO L F, LIU H J, et al. Analysis of configuration and maintenance strategy of LEO walker constellation[J]. Journal of Astronautics, 2019, 40(11): 1296-1303.
    [19] ROSSI A, PETIT A, MCKNIGHT D. Short-term space safety analysis of LEO constellations and clusters[J]. Acta Astronautica, 2020, 175: 476-483.
  • 加载中
图(12) / 表(4)
计量
  • 文章访问数:  259
  • HTML全文浏览量:  76
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-16
  • 录用日期:  2021-05-05
  • 网络出版日期:  2021-06-11
  • 整期出版日期:  2022-12-20

目录

    /

    返回文章
    返回
    常见问答