-
摘要:
针对胶铆混合连接方式单面修补铝合金板的疲劳性能,设计了未修理、铆接修理、胶接修理和胶铆修理4种不同形式的试验件,对其进行了疲劳试验。建立了试验件的有限元模型,得到了结构应力分布,获得了裂纹长度-裂纹尖端应力强度因子(SIF)曲线,并与试验结果进行了对比。结果表明:胶接修理和胶铆修理能有效降低裂纹处应力水平及裂纹扩展速率,且相对于未修理试验件疲劳寿命分别提升184.3%和197.3%;胶铆修理中铆钉能抑制胶层脱黏,相比胶接修理方式修理质量更可靠有效;有限元分析(FEA)结果与试验数据吻合良好,SIF误差基本保持在8%以内。
-
关键词:
- 修补方式 /
- 疲劳性能 /
- 疲劳裂纹扩展 /
- 有限元分析(FEA) /
- 应力强度因子(SIF)
Abstract:Aimed at the fatigue performance of aluminum alloy plate with hybrid adhesive-rivet single-sided patch, specimens with four different methods including un-repair, riveted repair, adhesive repair and adhesive-rivet repair were designed and subjected to fatigue tests. The finite element models of specimens were established, and the structural stress distributions and the crack length-crack tip Stress Intensity Factor (SIF) curves were obtained and compared with the test results. The results show that adhesive repair and adhesive-rivet repair methods can effectively reduce the stress level at the crack and the crack growth rate. Compared with un-repair specimens, the fatigue life of adhesive repair and adhesive-rivet repair methods is increased by 184.3% and 197.3%, respectively. For the adhesive-rivet repair, the rivets can inhibit the debonding of the adhesive layer, and the repair quality of this method is more reliable and effective than that of the adhesive repair method. The Finite Element Analysis (FEA) results are in good agreement with the test results, and the SIF error of FEA is approximately within 8%.
-
表 1 材料性能参数
Table 1. Parameters of material performance
材料参数 2024 [16] CR3212 Lord 320/322 弹性模量/GPa 72 69 1.59 泊松比 0.33 0.33 0.35 屈服强度/MPa 371 326 拉伸强度/MPa 442 472 30.6 剪切强度/MPa 11.7 表 2 疲劳性能测试结果
Table 2. Result of fatigue performance test
组内编号 未修理/cycle 铆接修理/cycle 胶接修理/cycle 胶铆修理/cycle 1 61 104 61 360 102 619 151 651 2 53 884 62 289 158 308 151 748 3 42 907 73 430 183 402 162 088 4 44 579 62 396 131 294 136 537 平均寿命/cycle 50 619 64 869 143 906 150 506 离散度 0.145 3 0.076 4 0.209 4 0.060 5 寿命提高比例/% 28 184.3 197.3 -
[1] 赵立涛, 王志瑾. 复合材料胶接修补金属裂纹板的应力强度因子研究[J]. 飞机设计, 2011, 31(2): 67-70. doi: 10.3969/j.issn.1673-4599.2011.02.016ZHAO L T, WANG Z J. The study of stress intensity factor of cracked metallic structure repaired with adhesive bonding composite patch[J]. Aircraft Design, 2011, 31(2): 67-70(in Chinese). doi: 10.3969/j.issn.1673-4599.2011.02.016 [2] 贺旺, 杜永华, 孙运刚, 等. 复合材料双面修理边缘裂纹铝合金厚板的静态和疲劳特性[J]. 南京理工大学学报, 2019, 43(4): 511-517. https://www.cnki.com.cn/Article/CJFDTOTAL-NJLG201904019.htmHE W, DU Y H, SUN Y G, et al. Static characteristics and fatigue behavior of edge-cracked thick aluminum plates double-side bonded with composite patches[J]. Journal of Nanjing University of Science and Technology, 2019, 43(4): 511-517(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-NJLG201904019.htm [3] 何宇廷. 飞机结构寿命控制原理与技术[M]. 北京: 国防工业出版社, 2017: 346-356.HE Y T. Principle and technology of aircraft structure life control[M]. Beijing: National Defense Industry Press, 2017: 346-356(in Chinese). [4] CHEN Y W, YANG X J, LI M J, et al. Mechanical behavior and progressive failure analysis of riveted, bonded and hybrid joints with CFRP-aluminum dissimilar materials[J]. Thin-Walled Structures, 2019, 139: 271-280. doi: 10.1016/j.tws.2019.03.007 [5] BAKER A A. Bonded composite repair of fatigue-cracked primary aircraft structure[J]. Composite Structure, 1999, 47(1-4): 431-437. doi: 10.1016/S0263-8223(00)00011-8 [6] 董登科, 丁惠梁. 飞机金属结构复合材料修理技术[M]. 北京: 航空工业出版社, 2017: 5-13.DONG D K, DING H L. Advances in the bonded composite repair of metallic aircraft structure[M]. Beijing: Aviation Industry Press, 2017: 5-13(in Chinese). [7] 杨孚标. 复合材料修复含中心裂纹铝合金板的静态与疲劳特性研究[D]. 长沙: 国防科技大学, 2006: 46-60.YANG F B. The static characteristics and fatigue properties of the center-cracked aluminum plates bonded with composite patches[D]. Changsha: National University of Defense Technology, 2006: 46-60(in Chinese). [8] 王光建. 单面自冲铆-粘连接工艺的试验研究及数值模拟[D]. 天津: 天津大学, 2008: 1-7.WANG G J. Experiment study and numerical simulation of single-sided rivet-bonding process[D]. Tianjin: Tianjin University, 2008: 1-7(in Chinese). [9] 刘璟琳. 胶铆复合接头力学性能及失效机理研究[D]. 大连: 大连理工大学, 2019: 1-4.LIU J L. Study on mechanical properties and failure mechanism of hybrid bond-riveted joints[D]. Dalian: Dalian University of Technology, 2019: 1-4(in Chinese). [10] 乔海涛, 赖士洪, 邹贤武. 胶铆连接性能研究[J]. 中国胶粘剂, 2002(1): 52-53. doi: 10.3969/j.issn.1004-2849.2002.01.018QIAO H T, LAI S H, ZOU X W. Study on properties of bond-riveted joint[J]. China Adhesives, 2002(1): 52-53(in Chinese). doi: 10.3969/j.issn.1004-2849.2002.01.018 [11] 库克超. CFRP/铝合金胶铆混合连接力学性能及疲劳强度分析[D]. 西安: 西安电子科技大学, 2018: 67-68.KU K C. Analysis of mechanical properties and fatigue strength of CFRP/aluminum alloy adhesive-rivet hybrid jointing[D]. Xi'an: Xidian University, 2018: 67-68(in Chinese). [12] SADOWSKI T, GOLEWSKI P, ZARZEKA R. Damage and failure processes of hybrid joints: Adhesive bonded aluminium plates reinforced by rivets[J]. Computational Materials Science, 2011, 50(4): 1256-1262. doi: 10.1016/j.commatsci.2010.06.022 [13] 邹鹏, 倪迎鸽, 毕雪, 等. 胶螺混合连接在复合材料结构中的研究进展[J]. 航空工程进展, 2021, 12(1): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-HKGC202101002.htmZOU P, NI Y G, BI X, et al. Research development on bonded-bolted hybrid joint in composite structure[J]. Advances in Aeronautical Science and Engineering, 2021, 12(1): 1-12(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKGC202101002.htm [14] 原志翔. 复合材料胶铆混合修理损伤特性实验研究[D]. 天津: 中国民航大学, 2020: 44-51.YUAN Z X. Experimental study on damage properties of adhesive-rivet hybrid repair of composite materials[D]. Tianjin: Civil Aviation Universityof China, 2020: 44-51(in Chinese). [15] PIRONDI A, MORONI F. Clinch-bonded and rivet-bonded hybrid joints: Application of damage models for simulation of forming and failure[J]. Journal of Adhesion Science and Technology, 2009, 23(10-11): 1547-1574. doi: 10.1163/156856109X433063 [16] 肖群力, 黄其青, 殷之平. 典型机翼整体壁板止裂特性分析及优化设计[J]. 机械强度, 2012, 34(1): 92-96. https://www.cnki.com.cn/Article/CJFDTOTAL-JXQD201201018.htmXIAO Q L, HUANG Q Q, YIN Z P. Analysis of crack-arrest property and optimum design for typical integrally stiffened panel[J]. Journal of Mechanical Strength, 2012, 34(1): 92-96(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXQD201201018.htm [17] 全国钢标准化技术委员会. 金属材料疲劳试验轴向力控制方法: GB/T 3075-2008[S]. 北京: 中华人民共和国国家质量监督检验检疫总局, 2008: 1-13.National Technical Committee for Steel Standardization. Metallic materials, fatigue test, axial force control method: GB/T 3075-2008[S]. Beijing: General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, 2008: 1-13(in Chinese). [18] 王跃, 熊玉平, 赵霞, 等. 含裂纹铝合金板单面修补结构疲劳裂纹扩展分析[J]. 推进技术, 2018, 39(4): 865-871. https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201804018.htmWANG Y, XIONG Y P, ZHAO X, et al. Analysis of fatigue crack propagation for repaired aluminum alloy plate containing crack with single patch[J]. Journal of Propulsion Technology, 2018, 39(4): 865-871(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201804018.htm [19] BELYTSCHKO T, BLACK T. Elastic crack growth in finite elements with minimal remeshing[J]. International Journal for Numerical Methods in Engineering, 1999, 45(5): 601-620. doi: 10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S [20] 郭历伦, 陈忠富, 罗景润, 等. 扩展有限元方法及应用综述[J]. 力学季刊, 2011, 32(4): 612-625. https://www.cnki.com.cn/Article/CJFDTOTAL-SHLX201104019.htmGUO L L, CHEN Z F, LUO J R, et al. A review of the extended finite element method and its applications[J]. Chinese Quarterly of Mechanics, 2011, 32(4): 612-625(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SHLX201104019.htm [21] 何龙龙, 刘志芳, 顾俊杰, 等. 基于XFEM的疲劳裂纹扩展路径和寿命预测[J]. 西北工业大学学报, 2019, 37(4): 737-743. doi: 10.3969/j.issn.1000-2758.2019.04.013HE L L, LIU Z F, GU J J, et al. Fatigue crack propagation path and life prediction based on XFEM[J]. Journal of Northwestern Polytechnical University, 2019, 37(4): 737-743(in Chinese). doi: 10.3969/j.issn.1000-2758.2019.04.013