留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

胶铆混合修补铝合金板的疲劳性能研究

喻健 张腾 何宇廷 陈涛 樊祥洪 周润浩

喻健, 张腾, 何宇廷, 等 . 胶铆混合修补铝合金板的疲劳性能研究[J]. 北京航空航天大学学报, 2021, 47(11): 2399-2406. doi: 10.13700/j.bh.1001-5965.2021.0126
引用本文: 喻健, 张腾, 何宇廷, 等 . 胶铆混合修补铝合金板的疲劳性能研究[J]. 北京航空航天大学学报, 2021, 47(11): 2399-2406. doi: 10.13700/j.bh.1001-5965.2021.0126
YU Jian, ZHANG Teng, HE Yuting, et al. Fatigue performance of adhesive-rivet hybrid repair of aluminum alloy plate[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(11): 2399-2406. doi: 10.13700/j.bh.1001-5965.2021.0126(in Chinese)
Citation: YU Jian, ZHANG Teng, HE Yuting, et al. Fatigue performance of adhesive-rivet hybrid repair of aluminum alloy plate[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(11): 2399-2406. doi: 10.13700/j.bh.1001-5965.2021.0126(in Chinese)

胶铆混合修补铝合金板的疲劳性能研究

doi: 10.13700/j.bh.1001-5965.2021.0126
基金项目: 

国家自然科学基金 52005507

国家自然科学基金 52007197

详细信息
    通讯作者:

    张腾, E-mail: zhangt_afeu@163.com

  • 中图分类号: V267+.45;TG498.1

Fatigue performance of adhesive-rivet hybrid repair of aluminum alloy plate

Funds: 

National Natural Science Foundation of China 52005507

National Natural Science Foundation of China 52007197

More Information
  • 摘要:

    针对胶铆混合连接方式单面修补铝合金板的疲劳性能,设计了未修理、铆接修理、胶接修理和胶铆修理4种不同形式的试验件,对其进行了疲劳试验。建立了试验件的有限元模型,得到了结构应力分布,获得了裂纹长度-裂纹尖端应力强度因子(SIF)曲线,并与试验结果进行了对比。结果表明:胶接修理和胶铆修理能有效降低裂纹处应力水平及裂纹扩展速率,且相对于未修理试验件疲劳寿命分别提升184.3%和197.3%;胶铆修理中铆钉能抑制胶层脱黏,相比胶接修理方式修理质量更可靠有效;有限元分析(FEA)结果与试验数据吻合良好,SIF误差基本保持在8%以内。

     

  • 图 1  胶铆修理试验件和铆钉几何模型

    Figure 1.  Geometrical model of adhesive-rivet repair specimen and rivet

    图 2  试验件制作流程

    Figure 2.  Production process of specimen

    图 3  疲劳性能测试现场

    Figure 3.  Fatigue performance test setup

    图 4  疲劳循环周次与裂纹长度关系

    Figure 4.  Fatigue cycles versus crack length

    图 5  试验件失效模式

    Figure 5.  Failure mode of specimens

    图 6  胶层失效模式

    Figure 6.  Failure modes of adhesive layer

    图 7  裂纹扩展速率与裂纹尖端SIF增量对数关系

    Figure 7.  Logarithmic relationship between crack growth rate and SIF increment of crack tip

    图 8  应力强度因子与裂纹长度关系

    Figure 8.  Stress intensity factor versus crack length

    图 9  胶铆修理试验件有限元模型

    Figure 9.  Finite element model of adhesive-rivet repair specimen

    图 10  a=20 mm情况下不同修理手段裂纹尖端Mises应力分布情况

    Figure 10.  Mises stress distribution at crack tip by different repair methods when a=20 mm

    图 11  沿厚度方向应力强度因子分布

    Figure 11.  Distribution of stress intensity factors along thickness direction

    表  1  材料性能参数

    Table  1.   Parameters of material performance

    材料参数 2024 [16] CR3212 Lord 320/322
    弹性模量/GPa 72 69 1.59
    泊松比 0.33 0.33 0.35
    屈服强度/MPa 371 326
    拉伸强度/MPa 442 472 30.6
    剪切强度/MPa 11.7
    下载: 导出CSV

    表  2  疲劳性能测试结果

    Table  2.   Result of fatigue performance test

    组内编号 未修理/cycle 铆接修理/cycle 胶接修理/cycle 胶铆修理/cycle
    1 61 104 61 360 102 619 151 651
    2 53 884 62 289 158 308 151 748
    3 42 907 73 430 183 402 162 088
    4 44 579 62 396 131 294 136 537
    平均寿命/cycle 50 619 64 869 143 906 150 506
    离散度 0.145 3 0.076 4 0.209 4 0.060 5
    寿命提高比例/% 28 184.3 197.3
    下载: 导出CSV
  • [1] 赵立涛, 王志瑾. 复合材料胶接修补金属裂纹板的应力强度因子研究[J]. 飞机设计, 2011, 31(2): 67-70. doi: 10.3969/j.issn.1673-4599.2011.02.016

    ZHAO L T, WANG Z J. The study of stress intensity factor of cracked metallic structure repaired with adhesive bonding composite patch[J]. Aircraft Design, 2011, 31(2): 67-70(in Chinese). doi: 10.3969/j.issn.1673-4599.2011.02.016
    [2] 贺旺, 杜永华, 孙运刚, 等. 复合材料双面修理边缘裂纹铝合金厚板的静态和疲劳特性[J]. 南京理工大学学报, 2019, 43(4): 511-517. https://www.cnki.com.cn/Article/CJFDTOTAL-NJLG201904019.htm

    HE W, DU Y H, SUN Y G, et al. Static characteristics and fatigue behavior of edge-cracked thick aluminum plates double-side bonded with composite patches[J]. Journal of Nanjing University of Science and Technology, 2019, 43(4): 511-517(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-NJLG201904019.htm
    [3] 何宇廷. 飞机结构寿命控制原理与技术[M]. 北京: 国防工业出版社, 2017: 346-356.

    HE Y T. Principle and technology of aircraft structure life control[M]. Beijing: National Defense Industry Press, 2017: 346-356(in Chinese).
    [4] CHEN Y W, YANG X J, LI M J, et al. Mechanical behavior and progressive failure analysis of riveted, bonded and hybrid joints with CFRP-aluminum dissimilar materials[J]. Thin-Walled Structures, 2019, 139: 271-280. doi: 10.1016/j.tws.2019.03.007
    [5] BAKER A A. Bonded composite repair of fatigue-cracked primary aircraft structure[J]. Composite Structure, 1999, 47(1-4): 431-437. doi: 10.1016/S0263-8223(00)00011-8
    [6] 董登科, 丁惠梁. 飞机金属结构复合材料修理技术[M]. 北京: 航空工业出版社, 2017: 5-13.

    DONG D K, DING H L. Advances in the bonded composite repair of metallic aircraft structure[M]. Beijing: Aviation Industry Press, 2017: 5-13(in Chinese).
    [7] 杨孚标. 复合材料修复含中心裂纹铝合金板的静态与疲劳特性研究[D]. 长沙: 国防科技大学, 2006: 46-60.

    YANG F B. The static characteristics and fatigue properties of the center-cracked aluminum plates bonded with composite patches[D]. Changsha: National University of Defense Technology, 2006: 46-60(in Chinese).
    [8] 王光建. 单面自冲铆-粘连接工艺的试验研究及数值模拟[D]. 天津: 天津大学, 2008: 1-7.

    WANG G J. Experiment study and numerical simulation of single-sided rivet-bonding process[D]. Tianjin: Tianjin University, 2008: 1-7(in Chinese).
    [9] 刘璟琳. 胶铆复合接头力学性能及失效机理研究[D]. 大连: 大连理工大学, 2019: 1-4.

    LIU J L. Study on mechanical properties and failure mechanism of hybrid bond-riveted joints[D]. Dalian: Dalian University of Technology, 2019: 1-4(in Chinese).
    [10] 乔海涛, 赖士洪, 邹贤武. 胶铆连接性能研究[J]. 中国胶粘剂, 2002(1): 52-53. doi: 10.3969/j.issn.1004-2849.2002.01.018

    QIAO H T, LAI S H, ZOU X W. Study on properties of bond-riveted joint[J]. China Adhesives, 2002(1): 52-53(in Chinese). doi: 10.3969/j.issn.1004-2849.2002.01.018
    [11] 库克超. CFRP/铝合金胶铆混合连接力学性能及疲劳强度分析[D]. 西安: 西安电子科技大学, 2018: 67-68.

    KU K C. Analysis of mechanical properties and fatigue strength of CFRP/aluminum alloy adhesive-rivet hybrid jointing[D]. Xi'an: Xidian University, 2018: 67-68(in Chinese).
    [12] SADOWSKI T, GOLEWSKI P, ZARZEKA R. Damage and failure processes of hybrid joints: Adhesive bonded aluminium plates reinforced by rivets[J]. Computational Materials Science, 2011, 50(4): 1256-1262. doi: 10.1016/j.commatsci.2010.06.022
    [13] 邹鹏, 倪迎鸽, 毕雪, 等. 胶螺混合连接在复合材料结构中的研究进展[J]. 航空工程进展, 2021, 12(1): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-HKGC202101002.htm

    ZOU P, NI Y G, BI X, et al. Research development on bonded-bolted hybrid joint in composite structure[J]. Advances in Aeronautical Science and Engineering, 2021, 12(1): 1-12(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKGC202101002.htm
    [14] 原志翔. 复合材料胶铆混合修理损伤特性实验研究[D]. 天津: 中国民航大学, 2020: 44-51.

    YUAN Z X. Experimental study on damage properties of adhesive-rivet hybrid repair of composite materials[D]. Tianjin: Civil Aviation Universityof China, 2020: 44-51(in Chinese).
    [15] PIRONDI A, MORONI F. Clinch-bonded and rivet-bonded hybrid joints: Application of damage models for simulation of forming and failure[J]. Journal of Adhesion Science and Technology, 2009, 23(10-11): 1547-1574. doi: 10.1163/156856109X433063
    [16] 肖群力, 黄其青, 殷之平. 典型机翼整体壁板止裂特性分析及优化设计[J]. 机械强度, 2012, 34(1): 92-96. https://www.cnki.com.cn/Article/CJFDTOTAL-JXQD201201018.htm

    XIAO Q L, HUANG Q Q, YIN Z P. Analysis of crack-arrest property and optimum design for typical integrally stiffened panel[J]. Journal of Mechanical Strength, 2012, 34(1): 92-96(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXQD201201018.htm
    [17] 全国钢标准化技术委员会. 金属材料疲劳试验轴向力控制方法: GB/T 3075-2008[S]. 北京: 中华人民共和国国家质量监督检验检疫总局, 2008: 1-13.

    National Technical Committee for Steel Standardization. Metallic materials, fatigue test, axial force control method: GB/T 3075-2008[S]. Beijing: General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, 2008: 1-13(in Chinese).
    [18] 王跃, 熊玉平, 赵霞, 等. 含裂纹铝合金板单面修补结构疲劳裂纹扩展分析[J]. 推进技术, 2018, 39(4): 865-871. https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201804018.htm

    WANG Y, XIONG Y P, ZHAO X, et al. Analysis of fatigue crack propagation for repaired aluminum alloy plate containing crack with single patch[J]. Journal of Propulsion Technology, 2018, 39(4): 865-871(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201804018.htm
    [19] BELYTSCHKO T, BLACK T. Elastic crack growth in finite elements with minimal remeshing[J]. International Journal for Numerical Methods in Engineering, 1999, 45(5): 601-620. doi: 10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S
    [20] 郭历伦, 陈忠富, 罗景润, 等. 扩展有限元方法及应用综述[J]. 力学季刊, 2011, 32(4): 612-625. https://www.cnki.com.cn/Article/CJFDTOTAL-SHLX201104019.htm

    GUO L L, CHEN Z F, LUO J R, et al. A review of the extended finite element method and its applications[J]. Chinese Quarterly of Mechanics, 2011, 32(4): 612-625(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SHLX201104019.htm
    [21] 何龙龙, 刘志芳, 顾俊杰, 等. 基于XFEM的疲劳裂纹扩展路径和寿命预测[J]. 西北工业大学学报, 2019, 37(4): 737-743. doi: 10.3969/j.issn.1000-2758.2019.04.013

    HE L L, LIU Z F, GU J J, et al. Fatigue crack propagation path and life prediction based on XFEM[J]. Journal of Northwestern Polytechnical University, 2019, 37(4): 737-743(in Chinese). doi: 10.3969/j.issn.1000-2758.2019.04.013
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  313
  • HTML全文浏览量:  70
  • PDF下载量:  144
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-17
  • 录用日期:  2021-05-05
  • 网络出版日期:  2021-11-20

目录

    /

    返回文章
    返回
    常见问答