留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向控制的仿鸽扑翼机纵向动力学建模与分析

彭程 孙立国 王衍洋 谭文倩 肖峰

彭程, 孙立国, 王衍洋, 等 . 面向控制的仿鸽扑翼机纵向动力学建模与分析[J]. 北京航空航天大学学报, 2022, 48(12): 2510-2519. doi: 10.13700/j.bh.1001-5965.2021.0130
引用本文: 彭程, 孙立国, 王衍洋, 等 . 面向控制的仿鸽扑翼机纵向动力学建模与分析[J]. 北京航空航天大学学报, 2022, 48(12): 2510-2519. doi: 10.13700/j.bh.1001-5965.2021.0130
PENG Cheng, SUN Liguo, WANG Yanyang, et al. Control oriented longitudinal modeling and analysis of pigeon-like flapping-wing aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(12): 2510-2519. doi: 10.13700/j.bh.1001-5965.2021.0130(in Chinese)
Citation: PENG Cheng, SUN Liguo, WANG Yanyang, et al. Control oriented longitudinal modeling and analysis of pigeon-like flapping-wing aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(12): 2510-2519. doi: 10.13700/j.bh.1001-5965.2021.0130(in Chinese)

面向控制的仿鸽扑翼机纵向动力学建模与分析

doi: 10.13700/j.bh.1001-5965.2021.0130
基金项目: 

航空科学基金 20185702003

详细信息
    通讯作者:

    王衍洋, E-mail: wangyanyang@buaa.edu.cn

  • 中图分类号: V276

Control oriented longitudinal modeling and analysis of pigeon-like flapping-wing aircraft

Funds: 

Aeronautical Science Foundation of China 20185702003

More Information
  • 摘要:

    鸽子飞行时常采用变频率和变振幅模式来操控翅膀扑动与扭转以达到高效飞行的目的。为了给研究扑翼机控制和分配算法提供通用的设计验证平台,建立包含3个控制输入自由度的仿鸽扑翼机动力学模型,并开展开闭环模型有效性验证。考虑机翼运动惯性力和力矩,基于Kane方程建立仿鸽扑翼机的纵向多刚体非线性模型。选择升降舵偏转角、机翼扑动角振幅和机翼扭转角振幅作为控制输入,定义机翼定周期扑动的操纵机制,估算面向控制模型所需的气动导数和操纵导数,建立面向控制的仿鸽扑翼机线性时变周期系统模型。基于Floquet理论对线性时变周期系统模型进行动稳定性分析,结果与开环时域仿真一致。从闭环角度对模型有效性和适应性进行验证,仿真表明,所建模型能有效反映仿鸽扑翼机时变周期动力学特性,并能支撑控制分配方法的设计研究。

     

  • 图 1  仿鸽扑翼机概念示意图

    Figure 1.  Diagram of a pigeon-like flapping-wing aircraft

    图 2  仿鸽扑翼机简化模型

    Figure 2.  Simplified model of pigeon-like flapping-wing aircraft

    图 3  分时段变振幅扑动序列示意图

    Figure 3.  Diagram of flapping sequence of time-varying amplitude

    图 4  不同机翼扑动角振幅下气动系数的变化

    Figure 4.  Variation of aerodynamic coefficients with different amplitudes of flapping-wing angle

    图 5  不同机翼扭转角振幅下气动系数的变化

    Figure 5.  Variation of aerodynamic coefficients with different amplitudes of wing torsional angle

    图 6  F的特征值变化

    Figure 6.  Eigenvalues of F

    图 7  控制输入的操纵效能

    Figure 7.  Control efficiency of inputs

    图 8  升降舵脉冲信号下的开环仿真响应

    Figure 8.  Open-loop simulation response under elevator pulse signal

    图 9  纵向双通道闭环控制器结构

    Figure 9.  Structure of longitudinal dual channel closed-loop controller

    图 10  闭环状态量响应

    Figure 10.  States response of closed-loop system

    图 11  闭环系统操纵响应

    Figure 11.  Control response of closed-loop system

    表  1  仿鸽扑翼机几何参数

    Table  1.   Geometry parameters of pigeon-like flapping-wings aircraft

    参数 数值
    总质量m/g 300
    机翼质量占总质量比重/% 6.67
    机身长l/m 0.50
    机身直径2r/m 0.10
    机身质心距机翼前缘距离xg/m 0.075
    机翼展长l1/m 0.70
    机翼机身质心距离l2/m 0.2
    机翼弦长l3/m 0.15
    机翼平均厚度/m 0.01
    机翼质心距机翼前缘距离/m 0.075 0
    机翼气动中心距机翼前缘距离xac/m 0.037 5
    单个尾翼长l4/m 0.01
    单个尾翼宽l5/m 0.01
    机翼安装角/rad 0.087 2
    下载: 导出CSV

    表  2  配平值

    Table  2.   Trimming values

    参数 数值
    机体轴xb方向速度u/(m·s-1) 9.962 0
    机体轴yb方向速度w/(m·s-1) 0.870 9
    扑翼机飞行迎角α/(m·s-1) 0.083 2
    俯仰角速度q/(rad·s-1) 0.000 0
    俯仰角θ/rad 0.083 2
    高度h/m 10.000 0
    升降舵偏转角δe/rad 0.017 5
    下载: 导出CSV

    表  3  机翼运动参数

    Table  3.   Motion parameters of wings

    参数 数值
    基准扑动角振幅A/rad 0.524
    最大扑动角振幅Amax/rad 0.962
    最小扑动角振幅Amin/rad 0.086
    扑动频率f1/Hz 10.0
    扑动角起始相位φ1/rad 0
    基准扭转角振幅R/rad 0.3
    最大扭转角振幅Rmax/rad 0.45
    最小扭转角振幅Rmin/rad 0.15
    扭转频率f2/Hz 10.0
    扭转角起始相位φ2/rad π/2
    下载: 导出CSV

    表  4  扑翼机尾容量系数典型值[22]

    Table  4.   Typical values of tail capacity coefficient of flapping-wing aircraft[22]

    名称 类型 Aht lht/c
    Delfly(TU Delft) 仿昆虫 0.61 2.7
    PY-7C(NPU) 仿鸟 0.33 1.5
    PY-7D(NPU) 仿鸟 0.36 1.75
    PY-8E(NPU) 仿鸟 0.36 1.80
    仿鸽扑翼机 仿鸟 0.37 1.67
    下载: 导出CSV
  • [1] 徐韦佳, 姚奎, 宋阿羚, 等. 微型仿生扑翼飞行器研究综述[J]. 信息技术与网络安全, 2020, 39(10): 7-17. https://www.cnki.com.cn/Article/CJFDTOTAL-WXJY202010002.htm

    XU W J, YAO K, SONG A L, et al. Survey of research on small and micro bionic flapping wing aircraft[J]. Information Technology and Network Security, 2020, 39(10): 7-17(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-WXJY202010002.htm
    [2] 向锦武, 孙毅, 申童, 等. 扑翼空气动力学研究进展与应用[J]. 工程力学, 2019, 36(4): 8-23. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201904003.htm

    XIANG J W, SUN Y, SHEN T, et al. Research progress and application of flapping wing aerodynamics[J]. Engineering Mechanics, 2019, 36(4): 8-23(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201904003.htm
    [3] 薛栋, 宋笔锋, 宋文萍, 等. 仿鸟型扑翼飞行器气动/结构/飞行力学耦合研究进展[J]. 空气动力学学报, 2018, 36(1): 88-97. https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201801016.htm

    XUE D, SONG B F, SONG W P, et al. Advances in coupling aeroelasticity and flight dynamics of bird inspired FMAV[J]. Acta Aerodynamica Sinica, 2018, 36(1): 88-97(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201801016.htm
    [4] 昂海松, 肖天航, 郑祥明. 微型飞行器的低雷诺数、非定常气动设计与分析[J]. 无人系统技术, 2018, 1(4): 17-32. https://www.cnki.com.cn/Article/CJFDTOTAL-UMST201804003.htm

    ANG H S, XIAO T H, ZHENG X M. Design and analysis of low Reynolds number and unsteady aerodynamic based on micro air vehicles[J]. Unmanned Systems Technology, 2018, 1(4): 17-32(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-UMST201804003.htm
    [5] TAYLOR G K, THOMAS A L R. Dynamic flight stability in the desert locust Schistocerca gregaria[J]. The Journal of Experimental Biology, 2003, 206(16): 2803-2829. doi: 10.1242/jeb.00501
    [6] 李智. 扑翼飞行机器人控制系统的设计研究[D]. 北京: 北方工业大学, 2016: 20-31.

    LI Z. Design of flapping wing flight robot control system[D]. Beijing: North China University of Technology, 2016: 20-31(in Chinese).
    [7] DIETL J M, GARCIA E. Stability in ornithopter longitudinal flight dynamics[J]. Journal of Guidance, Control, and Dynamics, 2008, 31(4): 1157-1163. doi: 10.2514/1.33561
    [8] DIETL J M, GARCIA E. Ornithopter control with periodic infinite horizon controllers[J]. Journal of Guidance, Control, and Dynamics, 2011, 34(5): 1412-1422. doi: 10.2514/1.52694
    [9] KAJAK K M, KARÁSEK M, CHU Q P, et al. A minimal longitudinal dynamic model of a tailless flapping wing robot for control design[J]. Bioinspiration & Biomimetics, 2019, 14(4): 046008.
    [10] JIANG T, YANG X S, WANG H W, et al. Longitudinal modeling and control of tailed flapping-wings micro air vehicles near hovering[J]. Journal of Robotics, 2019, 2019: 1-12.
    [11] GRAUER J A, HUBBARD J E. Multibody model of an ornithopter[J]. Journal of Guidance, Control, and Dynamics, 2009, 32(5): 1675-1679.
    [12] ORLOWSKI C T, GIRARD A R. Modeling and simulation of nonlinear dynamics of flapping wing micro air vehicles[J]. AIAA Journal, 2011, 49(5): 969-981.
    [13] 钱辰, 方勇纯, 李友朋. 面向扑翼飞行控制的建模与奇异摄动分析[J]. 自动化学报, 2022, 48(2): 434-443. https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO202202008.htm

    QIAN C, FANG Y C, LI Y P. Control oriented modeling and singular perturbation analysis in flapping-wing flight[J]. Acta Automatica Sinica, 2022, 48(2): 434-443(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO202202008.htm
    [14] ANDERSEN A, PESAVENTO U, WANG Z J. Analysis of transitions between fluttering, tumbling and steady descent of falling cards[J]. Journal of Fluid Mechanics, 2005, 541: 91-104.
    [15] SUN M, WANG J K, XIONG Y. Dynamic flight stability of hovering insects[J]. Acta Mechanica Sinica, 2007, 23(3): 231-246.
    [16] ARMANINI S F, CAETANO J V, DE VISSER C C, et al. Modelling wing wake and tail aerodynamics of a flapping-wing micro aerial vehicle[J]. International Journal of Micro Air Vehicles, 2019, 11: 1-24.
    [17] 年鹏, 宋笔锋, 宣建林, 等. 扑翼飞行器动力系统建模方法[J]. 航空学报, 2021, 42(9): 224646. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB202109029.htm

    NIAN P, SONG B F, XUAN J L, et al. Modeling method for propulsion system of flapping wing vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(9): 224646(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB202109029.htm
    [18] 昂海松, 曾锐, 段文博, 等. 柔性扑翼微型飞行器升力和推力机理的风洞试验和飞行试验[J]. 航空动力学报, 2007, 22(11): 1838-1845. https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI200711010.htm

    ANG H S, ZENG R, DUAN W B, et al. Aerodynamic experimental investigation for mechanism of lift and thrust of flexible flapping-wing MAV[J]. Journal of Aerospace Power, 2007, 22(11): 1838-1845(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI200711010.htm
    [19] 夏风. 扑翼微型飞行器动力学建模与控制算法研究[D]. 哈尔滨: 哈尔滨工业大学, 2007: 12-35.

    XIA F. Research on dynamics modeling and control algorithm of flapping micro aerial vehicle[D]. Harbin: Harbin Institute of Technology, 2007: 12-35(in Chinese).
    [20] 杨文青, 宋笔锋, 宋文萍. N-S方程数值研究翼型对微型扑翼气动特性的影响[J]. 计算力学学报, 2011, 28(2): 214-220. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJG201102011.htm

    YANG W Q, SONG B F, SONG W P. The effect of airfoil to aerodynamics characteristics of flapping wing by numerical simulation on Navier-Stokes equations[J]. Chinese Journal of Computational Mechanics, 2011, 28(2): 214-220(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSJG201102011.htm
    [21] 方振平, 陈万春, 张曙光. 航空飞行器飞行动力学[M]. 北京: 北京航空航天大学出版社, 2005: 214-223.

    FANG Z P, CHEN W C, ZHANG S G. Flight dynamics of aircraft[M]. Beijing: Beihang University Press, 2005: 214-223(in Chinese).
    [22] 熊超. 微型扑翼飞行器尾翼的分析与设计方法研究[D]. 西安: 西北工业大学, 2007: 29-58.

    XIONG C. Analysis and design methodology of the empennage of the flapping-wing micro air vehicles[D]. Xi'an: Northwestern Polytechnical University, 2007: 29-58(in Chinese).
    [23] 张杰, 吴森堂. 一种变体飞行器的动力学建模与动态特性分析[J]. 北京航空航天大学学报, 2015, 41(1): 58-64. doi: 10.13700/j.bh.1001-5965.2014.0048

    ZHANG J, WU S T. Dynamic modeling for a morphing aircraft and dynamic characteristics analysis[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(1): 58-64(in Chinese). doi: 10.13700/j.bh.1001-5965.2014.0048
    [24] 王进, 宋笔锋, 王利光, 等. 一种无级调幅扑翼驱动机构:

    CN102285453A[P]. 2011-12-21. WANG J, SONG B F, WANG L G, et al. Stepless amplitude modulating driving mechanism for flapping wing: CN102285453A[P]. 2011-12-21(in Chinese).
    [25] YANG W Q, WANG L G, SONG B F. DOVE: A biomimetic flapping-wing micro air vehicle[J]. International Journal of Micro Air Vehicles, 2018, 10(1): 70-84.
    [26] WU J H, SUN M. Floquet stability analysis of the longitudinal dynamics of two hovering model insects[J]. Journal of the Royal Society Interface, 2012, 9(74): 2033-2046.
    [27] HARKEGARD O. Efficient active set algorithms for solving constrained least squares problems in aircraft control allocation[C]//Proceedings of the 41st IEEE Conference on Decision and Control. Piscataway: IEEE Press, 2002: 1295-1300.
  • 加载中
图(11) / 表(4)
计量
  • 文章访问数:  403
  • HTML全文浏览量:  120
  • PDF下载量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-22
  • 录用日期:  2021-05-14
  • 网络出版日期:  2021-06-15
  • 整期出版日期:  2022-12-20

目录

    /

    返回文章
    返回
    常见问答