留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

miniSAR卫星精密参考轨道设计

廖祥 郑靖 许永生 谢成清 丁强强

廖祥, 郑靖, 许永生, 等 . miniSAR卫星精密参考轨道设计[J]. 北京航空航天大学学报, 2022, 48(12): 2442-2449. doi: 10.13700/j.bh.1001-5965.2021.0141
引用本文: 廖祥, 郑靖, 许永生, 等 . miniSAR卫星精密参考轨道设计[J]. 北京航空航天大学学报, 2022, 48(12): 2442-2449. doi: 10.13700/j.bh.1001-5965.2021.0141
LIAO Xiang, ZHENG Jing, XU Yongsheng, et al. Precise references orbit design of miniSAR satellite[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(12): 2442-2449. doi: 10.13700/j.bh.1001-5965.2021.0141(in Chinese)
Citation: LIAO Xiang, ZHENG Jing, XU Yongsheng, et al. Precise references orbit design of miniSAR satellite[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(12): 2442-2449. doi: 10.13700/j.bh.1001-5965.2021.0141(in Chinese)

miniSAR卫星精密参考轨道设计

doi: 10.13700/j.bh.1001-5965.2021.0141
基金项目: 

国家自然科学基金 11802073

深圳市科技计划 JSGG20190823094603691

详细信息
    通讯作者:

    郑靖, E-mail: 29321633@qq.com

  • 中图分类号: V173.1

Precise references orbit design of miniSAR satellite

Funds: 

National Natural Science Foundation of China 11802073

Shenzhen Science and Technology Plan JSGG20190823094603691

More Information
  • 摘要:

    为满足轻小型合成孔径雷达(miniSAR)卫星干涉测量任务对空间基线的要求,通过分析卫星参考轨道特性,建立了一套精密参考轨道设计算法。所建算法以miniSAR卫星成功入轨后的一组定轨数据及根据参考轨道特性解析得到的参考轨道预估值为输入,基于仅考虑中心天体非球形高阶引力摄动的轨道外推模型、Eckstein-Hechler平根模型及嵌套式迭代修正方法,设计输出其任务周期内使用的参考轨道。数值实验表明:所建算法设计的参考轨道生成的参考轨迹在三维空间的回归精度优于0.01 m,满足实际工程应用需求。

     

  • 图 1  受太阳引力影响的倾角长期项摄动[15]

    Figure 1.  Secular perturbation of inclination due to gravity of the Sun[15]

    图 2  精密参考轨道设计算法流程

    Figure 2.  Algorithm flow chart of precise reference orbit design

    图 3  偏心率平根矢量修正示意图

    Figure 3.  Diagram of mean eccentricity vector correction

    图 4  第1轮(a, i) 迭代修正收敛情况

    Figure 4.  Convergence of first (a, i) iterative correction

    图 5  第2轮(a, i) 迭代修正收敛情况

    Figure 5.  Convergence of second (a, i) iterative correction

    图 6  偏心率平根矢量收敛情况

    Figure 6.  Convergence of mean eccentricity vector

    图 7  (e, ω)迭代修正收敛情况

    Figure 7.  Convergence of (e, ω) iterative correction

    表  1  定位数据

    Table  1.   Precision positioning data

    历元(UTCG) xf/m yf/m zf/m vxf/(m·s-1) vyf/(m·s-1) vzf/(m·s-1)
    2021-01-01T 00:26:10.0 -783 574.748 753 -6 863 761.705 245 -26 410.675 743 -1 491.687 930 141.316 578 7 530.503 149
    2021-01-01T 00:26:11.0 -785 063.311 452 -6 863 616.424 823 -18 889.864 376 -1 490.723 932 149.784 298 7 530.530 497
    2021-01-01T 00:26:12.0 -786 550.909 902 -6 863 462.687 911 -11 369.030 230 -1 489.756 916 158.251 697 7 530.548 764
    2021-01-01T 00:26:13.0 -788 037.541 089 -6 863 300.494 834 -3 848.182 376 -1 488.786 875 166.718 766 7 530.557 951
    2021-01-01T 00:26:14.0 -789 523.201 997 -6 863 129.845 928 3 672.670 120 -1 487.813 817 175.185 493 7 530.558 057
    2021-01-01T 00:26:15.0 -791 007.889 614 -6 862 950.741 538 11 193.518 187 -1 486.837 742 183.651 868 7 530.549 083
    2021-01-01T 00:26:16.0 -792 491.600 927 -6 862 763.182 023 18 714.352 756 -1 485.858 651 192.117 880 7 530.531 028
    2021-01-01T 00:26:17.0 -793 974.332 924 -6 862 567.167 748 26 235.164 760 -1 484.876 544 200.583 519 7 530.503 892
    下载: 导出CSV

    表  2  迭代修正过程中所得参考轨道根数(TOD瞬根)

    Table  2.   Reference orbit elements obtained during process of iterative correction (TOD osculating elements)

    轨道参数 a0 a1 a2 a
    历元(UTCG) t0 t0 t0 t0
    半长轴a/m 6 917 784.183 313 6 917 807.832 603 6 917 807.832 603 6 917 808.175 966
    偏心率e 0.001 165 858 0.001 165 858 0.001 340 574 0.001 340 574
    轨道倾角i/(°) 97.511 721 612 97.534 015 350 97.534 015 350 97.534 027 100
    近地点幅角ω/(°) 65.805 305 734 65.805 305 734 69.021 264 985 69.021 264 985
    升交点赤经Ω/(°) 10.881 860 946 10.881 860 946 10.881 860 946 10.881 860 946
    平近点角M/(°) 294.194 463 246 294.194 463 246 290.978 735 015 290.978 735 015
    下载: 导出CSV

    表  3  迭代修正收敛数据

    Table  3.   Convergence data of iterative correction

    n ||Δr′||/m ||Δr||/m Δe n ||Δr′||/m ||Δr||/m Δe
    1 28 263.230 02 52.167 615 93 0.000 187 929 7 4 0.000 335 849 0.005 178 737 0.000 000 000 2
    2 3 073.541 513 0.486 591 513 0.000 002 372 6 5 0.000 005 517
    3 0.263 825 008 0.005 720 578 0.000 000 026 5 6 0.000 000 438
    下载: 导出CSV
  • [1] 徐辉, 刘爱芳, 王帆. 轻小型星载SAR系统发展探讨[J]. 现代雷达, 2017, 39(7): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-XDLD201707001.htm

    XU H, LIU A F, WANG F. Discussion on development of spaceborne light-SAR[J]. Modern Radar, 2017, 39(7): 1-6(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XDLD201707001.htm
    [2] PAU P L, MARC R C, ZAN F D, et al. Role of the orbital tube in interferometric spaceborne SAR missions[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(7): 1486-1490. doi: 10.1109/LGRS.2015.2409885
    [3] MATS R. The orbit control of ERS-1 and ERS-2 for a very accurate tandem configuration[J]. RBCM Special Issue, 1999(21): 72-78.
    [4] ARBINGER C, D'AMICO S, EINEDER M. Precise ground-in-the-loop orbit control for low earth observation satellites[C]//18th International Symposium on Space Flight Dynamics, 2014: 333.
    [5] KANKAKU Y, SUZUKI S, OSAWA Y. ALOS-2 mission and development status[C]//2013 IEEE International Geoscience and Remote Sensing Symposium. Piscataway: IEEE Press, 2014: 2396-2399.
    [6] SERRANO M A M, SHURMER I, MARC X. Sentinel-1: Operational approach to the orbit control strategy[J]. Advances in Space Research, 2017, 60(5): 879-892. doi: 10.1016/j.asr.2017.05.034
    [7] BARAT I, PAU P, BERTHYL D, et al. Sentinel-1: Link between orbit control and interferometric SAR baselines performance[C]//25th International Symposium on Space Flight Dynamics, 2015: 19-23.
    [8] DE FLORIO S. Precise autonomous orbit control in low earth orbit: From design to flight[D]. Glasgow: University of Glasgow, 2013: 4-11.
    [9] 仲惟超. 卫星集群导航与轨道控制方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2014: 20-21.

    ZHONG W C. Research on the orbit navigation and control of the satellite cluster[D]. Harbin: Harbin Institute of Technology, 2014: 20-21(in Chinese).
    [10] D'AMICO S, ARBINGER C, KIRSCHNER M, et al. Generation of an optimum target trajectory for the TerraSAR-X repeat observation satellite[C]//18th International Symposium on Space Flight Dynamics, 2004: 137.
    [11] 蒲明珺. 高精度回归轨道设计与精确维持控制方法研究[D]. 上海: 上海交通大学, 2018: 32-47.

    PU M J. Research on high-precision repeat-groundtranck orbit design and precise orbit maintenance control method[D]. Shanghai: Shanghai Jiao Tong University, 2018: 32-47(in Chinese).
    [12] 杨盛庆, 杜耀珂, 陈筠力. 基于迭代修正方法的严格回归轨道设计[J]. 宇航学报, 2016, 37(4): 420-426. https://www.cnki.com.cn/Article/CJFDTOTAL-YHXB201604007.htm

    YANG S Q, DU Y K, CHEN J L. Design of strictly-regressive orbit based on iterative adjustment method[J]. Journal of Astronautics, 2016, 37(4): 420-426(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YHXB201604007.htm
    [13] KAHLE R, SPIRIDONOVA S, KIRSCHNER M. Improved reference orbits for the repeat-ground-track missions enMAP and tandem-L[J]. Transactions of the Japan Society for Aeronautical and Space Sciences, Aerospace Technology Japan, 2019, 17(3): 308-314. doi: 10.2322/tastj.17.308
    [14] 陈洁, 汤国建. 太阳同步卫星的轨道设计[J]. 上海航天, 2004, 21(3): 34-38. https://www.cnki.com.cn/Article/CJFDTOTAL-SHHT200403008.htm

    CHEN J, TANG G J. Orbit design of sun-synchronous satellite[J]. Aerospace Shanghai, 2004, 21(3): 34-38(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SHHT200403008.htm
    [15] YAMAMOTO T, ARIKAWA Y, UEDA Y, et al. Autonomous precision orbit control considering observation planning: ALOS-2 flight results[J]. Journal of Guidance, Control, and Dynamics, 2016, 39(6): 1244-1264. doi: 10.2514/1.G001375
    [16] VALLADO D A. Fundamentals of astrodynamics and applications[M]. 4nd ed. El Segundo: Microcosm Press, 2013: 609-730.
    [17] ECKSTEIN M, HECHLER H. A reliable derivation of the perturbations due to any zonal and tesseral harmonics of the geopotentialfor nearly-circular satellite orbits[C]//Eropean Space Research Organisation Scientific Report 13, 1970: 1-31.
    [18] ALAIN L, THIERRY M. Celestlab: Spaceflight dynamics toolbox for mission analysis[C]//International Conference on Astrodynamics Tools and Techniques 2016, 2016: 1-6.
    [19] MAISONOBE L, POMMIER V, PARRAUD P. Orekit: An open source library for operational flight dynamics applications[C]//International Conference on Astrodynamics Tools and Techniques 2010, 2010: 1-6.
    [20] PAVLIS N K, HOLMES S A, KENYON S C, et al. The development and evaluation of the Earth gravitational model 2008 (EGM2008)[J]. Journal of Geophysical Research: Solid Earth, 2012, 117: B04406. doi: 10.1029/2011JB008916
    [21] VERNER J H. Numerically optimal Runge-Kutta pairs with interpolants[J]. Numerical Algorithms, 2010, 53(2): 383-396. doi: 10.1007/s11075-009-9290-3
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  316
  • HTML全文浏览量:  122
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-25
  • 录用日期:  2021-08-27
  • 网络出版日期:  2021-09-15
  • 整期出版日期:  2022-12-20

目录

    /

    返回文章
    返回
    常见问答