留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于PCA-HicksHenne方法的几何不确定性稳健优化设计

张威 王强 路嘉晨 阎超

张威, 王强, 路嘉晨, 等 . 基于PCA-HicksHenne方法的几何不确定性稳健优化设计[J]. 北京航空航天大学学报, 2022, 48(12): 2473-2481. doi: 10.13700/j.bh.1001-5965.2021.0142
引用本文: 张威, 王强, 路嘉晨, 等 . 基于PCA-HicksHenne方法的几何不确定性稳健优化设计[J]. 北京航空航天大学学报, 2022, 48(12): 2473-2481. doi: 10.13700/j.bh.1001-5965.2021.0142
ZHANG Wei, WANG Qiang, LU Jiachen, et al. Robust optimization design under geometric uncertainty based on PCA-HicksHenne method[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(12): 2473-2481. doi: 10.13700/j.bh.1001-5965.2021.0142(in Chinese)
Citation: ZHANG Wei, WANG Qiang, LU Jiachen, et al. Robust optimization design under geometric uncertainty based on PCA-HicksHenne method[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(12): 2473-2481. doi: 10.13700/j.bh.1001-5965.2021.0142(in Chinese)

基于PCA-HicksHenne方法的几何不确定性稳健优化设计

doi: 10.13700/j.bh.1001-5965.2021.0142
基金项目: 

国家自然科学基金 11721202

国家自然科学基金 11972064

详细信息
    通讯作者:

    阎超, E-mail: yanchao@buaa.edu.cn

  • 中图分类号: V221+.3;TB553

Robust optimization design under geometric uncertainty based on PCA-HicksHenne method

Funds: 

National Natural Science Foundation of China 11721202

National Natural Science Foundation of China 11972064

More Information
  • 摘要:

    考虑不确定因素的稳健优化设计在飞行器气动外形设计选型中至关重要。针对环境扰动下稳健优化的研究较多,而对几何不确定性的关注则相对较少。为量化几何不确定性,采用主成分分析(PCA)方法,对RAE2822翼型的参数化过程进行了研究,并揭示了翼型的主要几何变形模态。采用敏感度分析方法,指出厚度变形模态、弯度变形模态及上翼面最大厚度位置的轴向位移模态是主要影响模态,并将其作为扰动模态进行稳健优化研究。结果表明: 不考虑扰动的确定优化翼型的升力变化更加剧烈,标准差增大近200%;考虑几何扰动的优化翼型稳健性更高,在平均性能提升的同时,无论是升力还是阻力的变化都比原始RAE2822翼型更小。

     

  • 图 1  样本翼型及RAE2822翼型示意图

    Figure 1.  Schematic of sample airfoils and RAE2822 airfoil

    图 2  主要几何变形模态对应模态能量分布

    Figure 2.  Energy amplitude of main geometric transformation modes

    图 3  主要几何变形模态对应累积能量分布

    Figure 3.  Accumulated energy of main geometric transformation modes

    图 4  主要几何变形模态示意图

    Figure 4.  Schematic of main geometric transformation modes

    图 5  主要几何变形模态对应参数分布情况

    Figure 5.  Parameters distribution of main geometric transformation modes

    图 6  升力系数的参数敏感度分析

    Figure 6.  Parametric sensitivity analysis of lift coefficient

    图 7  阻力系数的参数敏感度分析

    Figure 7.  Parametric sensitivity analysis of drag coefficient

    图 8  翼型厚度的参数敏感度分析

    Figure 8.  Parametric sensitivity analysis of airfoil thickness

    图 9  几何扰动下的翼型变化情况

    Figure 9.  Airfoil transformation under geometric perturbation

    图 10  几何扰动下稳健优化设计流程

    Figure 10.  Flow chart of robust optimization design under geometric perturbation

    图 11  案例2确定优化Pareto前沿面

    Figure 11.  Pareto frontier of deterministic optimization in Case 2

    图 12  案例2稳健优化Pareto前沿面

    Figure 12.  Pareto frontier of robust optimization in Case 2

    图 13  优化翼型对比

    Figure 13.  Comparisons of optimal airfoils

    图 14  RAE2822翼型及扰动翼型的压力分布

    Figure 14.  Surface pressure distribution of RAE2822 airfoil and its corresponding airfoils under perturbation

    图 15  确定优化翼型及扰动翼型的压力分布

    Figure 15.  Surface pressure distribution of deterministic optimal airfoil and its corresponding airfoils under perturbation

    图 16  稳健优化翼型及扰动翼型的压力分布

    Figure 16.  Surface pressure distribution of robust optimal airfoil and its corresponding airfoils under perturbation

    表  1  计算状态

    Table  1.   Computational condition

    参数 马赫数Ma 迎角α/(°) 雷诺数Re/m-1
    数值 0.734 2.54 6.5×106
    下载: 导出CSV

    表  2  不同扰动量下升力系数的不确定度对比

    Table  2.   Comparisons of lift coefficient uncertainty under different perturbations

    扰动量/倍 升力系数
    均值 标准差 变异系数
    0.2 0.768 0 0.006 57 0.008 6
    0.3 0.767 7 0.009 81 0.012 8
    0.4 0.766 7 0.012 96 0.016 9
    下载: 导出CSV

    表  3  不同扰动量下阻力系数的不确定度对比

    Table  3.   Comparisons of drag coefficient uncertainty under different perturbations

    扰动量/倍 阻力系数
    均值 标准差 变异系数
    0.2 0.016 21 0.000 82 0.050 7
    0.3 0.016 27 0.001 21 0.074 7
    0.4 0.016 32 0.001 59 0.097 7
    下载: 导出CSV

    表  4  不同扰动量下翼型厚度的不确定度对比

    Table  4.   Comparisons of airfoil thickness uncertainty under different perturbations

    扰动量/倍 翼型厚度
    均值 标准差 变化范围(99.7%)
    0.2 0.121 0 0.001 2 ±0.003 6
    0.3 0.121 0 0.001 8 ±0.005 4
    0.4 0.121 0 0.002 4 ±0.007 2
    下载: 导出CSV

    表  5  案例1优化结果对比

    Table  5.   Comparisons of optimal results in Case 1

    翼型 μCl σCl/10-2 μθ
    RAE2822 0.767 7 0.981 2 0.121 0
    确定优化外形 0.886 5 1.179 7 0.119 8
    稳健优化外形 0.895 9 1.018 3 0.120 8
    下载: 导出CSV

    表  6  案例2确定优化结果

    Table  6.   Solutions of deterministic optimization in Case 2

    翼型 μCd/10-1 σCd/10-3 μCl σCl/10-2 μθ
    RAE2822 0.162 7 1.214 5 0.767 7 0.981 2 0.121 0
    翼型① 0.124 6 0.449 3 0.731 6 1.459 5 0.120 1
    翼型② 0.141 9 0.888 8 0.794 3 1.252 3 0.123 1
    翼型③ 0.149 0 0.556 3 0.820 4 2.956 6 0.121 2
    下载: 导出CSV

    表  7  案例2稳健优化结果

    Table  7.   Solutions of robust optimization in Case 2

    翼型 μCd/10-1 σCd/10-3 μCl σCl/10-2 μθ
    RAE2822 0.162 7 1.214 5 0.767 7 0.981 2 0.121 0
    翼型④ 0.153 7 0.945 3 0.799 9 0.966 0 0.121 0
    翼型⑤ 0.149 6 1.035 6 0.832 9 1.026 9 0.122 2
    翼型⑥ 0.165 6 1.072 4 0.834 1 0.967 6 0.122 1
    下载: 导出CSV
  • [1] 蒙文巩, 马东立. 飞机系列机翼气动特性稳健匹配优化设计[J]. 北京航空航天大学学报, 2013, 39(1): 126-131. https://bhxb.buaa.edu.cn/bhzk/article/id/12516

    MENG W G, MA D L. Robust matching design optimization for wing aerodynamic characteristic of aircraft family[J]. Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(1): 126-131(in Chinese). https://bhxb.buaa.edu.cn/bhzk/article/id/12516
    [2] 山美娟, 赵丽滨. 基于可靠性的CFRP螺栓连接优化设计方法[J]. 北京航空航天大学学报, 2021, 47(11): 2249-2255. doi: 10.13700/j.bh.1001-5965.2020.0425

    SHAN M J, ZHAO L B. Reliability-based design optimization method of CFRP bolted joints[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(11): 2249-2255(in Chinese). doi: 10.13700/j.bh.1001-5965.2020.0425
    [3] 李焦赞, 高正红. 基于几何不确定性的翼型多目标稳健优化设计[J]. 力学学报, 2011, 43(3): 611-615. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201103022.htm

    LI J Z, GAO Z H. Multi objective optimization methodology for airfoil robust design under geometry uncertainty[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(3): 611-615(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201103022.htm
    [4] 宋鑫, 郑冠男, 杨国伟, 等. 几何不确定性区间分析及鲁棒气动优化设计[J]. 北京航空航天大学学报, 2019, 45(11): 2217-2227. doi: 10.13700/j.bh.1001-5965.2019.0077

    SONG X, ZHENG G N, YANG G W, et al. Interval analysis for geometric uncertainty and robust aerodynamic optimization design[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(11): 2217-2227(in Chinese). doi: 10.13700/j.bh.1001-5965.2019.0077
    [5] 赵青, 王惠文, 王珊珊. 基于中心-对数半长的区间数据主成分分析[J]. 北京航空航天大学学报, 2021, 47(7): 1414-1421. doi: 10.13700/j.bh.1001-5965.2020.0227

    ZHAO Q, WANG H W, WANG S S. A principal component analysis of interval data based on center and log-radius[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(7): 1414-1421(in Chinese). doi: 10.13700/j.bh.1001-5965.2020.0227
    [6] 蒋晨琛, 霍宏涛, 冯琦. 一种基于PCA的面向对象多尺度分割优化算法[J]. 北京航空航天大学学报, 2020, 46(6): 1192-1203. doi: 10.13700/j.bh.1001-5965.2019.0398

    JIANG C C, HUO H T, FENG Q. An object-oriented multi-scale segmentation optimization algorithm based on PCA[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(6): 1192-1203(in Chinese). doi: 10.13700/j.bh.1001-5965.2019.0398
    [7] 鞠胜军. 结合转捩的精细化气动优化设计方法研究[D]. 北京: 北京航空航天大学, 2018: 16-28.

    JU S J. Numerical research o detail aerodynamic optimization design with transition prediction[D]. Beijing: Beihang University, 2018: 16-28(in Chinese).
    [8] 张扬, 白俊强, 朱军, 等. 改进Hicks-Henne型函数法在翼型参数化中的应用[J]. 飞行力学, 2011, 29(5): 35-38. https://www.cnki.com.cn/Article/CJFDTOTAL-FHLX201105009.htm

    ZHANG Y, BAI J Q, ZHU J, et al. Application of improved Hicks-Henne shape function to airfoil parameterization[J]. Flight Dynamics, 2011, 29(5): 35-38(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-FHLX201105009.htm
    [9] 李静. 高性能飞行器气动外形设计方法研究与应用[D]. 西安: 西北工业大学, 2014: 41-43.

    LI J. Research on aerodynamic configuration design methods for high performance aircraft[D]. Xi'an: Northwestern Polytechnical University, 2014: 41-43(in Chinese).
    [10] 周志华. 机器学习[M]. 北京: 清华大学出版社, 2016: 229-232.

    ZHOU Z H. Machine learning[M]. Beijing: Tsinghua University Press, 2016: 229-232(in Chinese).
    [11] JU S J, YAN C, WANG X Y, et al. Sensitivity analysis of geometric parameters upon the aerothermodynamic performances of Mars entry vehicle[J]. International Journal of Heat and Mass Transfer, 2018, 120: 597-607. https://www.sciencedirect.com/science/article/pii/S0017931017328053
    [12] ZHAO Y T, YAN C, WANG X Y, et al. Uncertainty and sensitivity analysis of SST turbulence model on hypersonic flow heat transfer[J]. International Journal of Heat and Mass Transfer, 2019, 136: 808-820.
    [13] ZHANG W, WANG S, WANG Q, et al. Reverse jet parameters study on aerodynamic thermal uncertainty of a blunt body[J]. Aerospace Science and Technology, 2020, 107: 106260.
    [14] ZHANG W, WANG Q, YAN C. An intelligent polynomial chaos expansion method based upon features selection[J]. Journal of Physics: Conference Series, 2021, 1786(1): 012046.
    [15] 张德虎, 席胜, 田鼎. 典型翼型参数化方法的翼型外形控制能力评估[J]. 航空工程进展, 2014, 5(3): 281-288. https://www.cnki.com.cn/Article/CJFDTOTAL-HKGC201403004.htm

    ZHANG D H, XI S, TIAN D. Geometry control ability evaluation of classical airfoil parametric methods[J]. Advances in Aeronautical Science and Engineering, 2014, 5(3): 281-288(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKGC201403004.htm
    [16] 王胜, 王强, 林博希, 等. 类X-51A飞行器纵向机动数值虚拟飞行仿真[J]. 北京航空航天大学学报, 2021, 47(1): 97-105. doi: 10.13700/j.bh.1001-5965.2019.0618

    WANG S, WANG Q, LIN B X, et al. Longitudinal maneuver simulation of an X-51A-like aircraft based on numerical virtual flight[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(1): 97-105(in Chinese). doi: 10.13700/j.bh.1001-5965.2019.0618
    [17] LIU F, HAN Z H, ZHANG Y, et al. Surrogate-based aerodynamic shape optimization of hypersonic flows considering transonic performance[J]. Aerospace Science and Technology, 2019, 93: 105345.
    [18] SHEN Y, HUANG W, ZHANG T T, et al. Parametric modeling and aerodynamic optimization of EXPERT configuration at hypersonic speeds[J]. Aerospace Science and Technology, 2019, 84: 641-649. https://www.sciencedirect.com/science/article/pii/S127096381832203X
  • 加载中
图(16) / 表(7)
计量
  • 文章访问数:  348
  • HTML全文浏览量:  76
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-25
  • 录用日期:  2021-06-13
  • 网络出版日期:  2021-06-21
  • 整期出版日期:  2022-12-20

目录

    /

    返回文章
    返回
    常见问答