留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于特征融合与抗遮挡的卫星视频目标跟踪方法

刘耀胜 廖育荣 林存宝 李兆铭 杨新岩

刘耀胜, 廖育荣, 林存宝, 等 . 基于特征融合与抗遮挡的卫星视频目标跟踪方法[J]. 北京航空航天大学学报, 2022, 48(12): 2537-2547. doi: 10.13700/j.bh.1001-5965.2021.0150
引用本文: 刘耀胜, 廖育荣, 林存宝, 等 . 基于特征融合与抗遮挡的卫星视频目标跟踪方法[J]. 北京航空航天大学学报, 2022, 48(12): 2537-2547. doi: 10.13700/j.bh.1001-5965.2021.0150
LIU Yaosheng, LIAO Yurong, LIN Cunbao, et al. Feature-fusion and anti-occlusion based target tracking method for satellite videos[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(12): 2537-2547. doi: 10.13700/j.bh.1001-5965.2021.0150(in Chinese)
Citation: LIU Yaosheng, LIAO Yurong, LIN Cunbao, et al. Feature-fusion and anti-occlusion based target tracking method for satellite videos[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(12): 2537-2547. doi: 10.13700/j.bh.1001-5965.2021.0150(in Chinese)

基于特征融合与抗遮挡的卫星视频目标跟踪方法

doi: 10.13700/j.bh.1001-5965.2021.0150
基金项目: 

国家自然科学基金 61805283

详细信息
    通讯作者:

    林存宝, E-mail: cunbaolin@163.com

Feature-fusion and anti-occlusion based target tracking method for satellite videos

Funds: 

National Natural Science Foundation of China 61805283

More Information
  • 摘要:

    卫星视频中的目标易受到遮挡和复杂环境干扰等影响,造成对目标的运动状态估计不够准确,导致目标跟踪失败。基于此,在核相关滤波(KCF)算法的基础上设计2种算法提高目标跟踪的成功率,实现鲁棒性的目标跟踪。通过提取目标的方向梯度直方图(HOG)特征、灰度特征和高斯曲率特征表述目标的外观模型;联合响应图的峰值和平均峰值相关能量(APCE)对目标的响应图进行自适应加权融合,并将融合后的响应图峰值作为置信度对目标的模型进行自适应更新;通过使用卡尔曼滤波的方法对遮挡的目标进行位置预测,当目标遮挡结束时,对目标进行重新跟踪,解决卫星视频中目标被遮挡的问题。大量实验结果表明:所改进的相关滤波算法对卫星视频中的目标跟踪,尤其是在复杂环境、目标被遮挡及场景光照发生变化的情况下,具有良好的效果,并且在目标跟踪的精度和成功率等方面都有很大的提高,为进一步对卫星视频中的目标跟踪奠定了基础。

     

  • 图 1  基于改进的相关滤波卫星视频目标跟踪算法流程

    Figure 1.  Flowchart of target tracking algorithm in satellite videos based on improved correlation filter

    图 2  空中目标跟踪结果的精度和成功率曲线

    Figure 2.  Precision and success curves of target tracking results in Plane sequences

    图 3  遮挡目标跟踪结果的精度和成功率曲线

    Figure 3.  Precision and success curves of occluded target tracking results in Car1 sequences

    图 4  运动目标跟踪结果的精度和成功率曲线

    Figure 4.  Precision and success curves of target tracking results in Car2 sequences

    图 5  海面目标跟踪结果的精度和成功率曲线

    Figure 5.  Precision and success curves of target tracking results in Ship sequences

    图 6  卫星视频的运动目标及运动区域

    Figure 6.  Moving target and moving area of satellite videos

    图 7  目标的可视化跟踪结果

    Figure 7.  Visualization tracking results of targets

    图 8  APCE值和视频帧数的关系

    Figure 8.  Relationship between APCE values and number of video frames

    表  1  Plane视频序列中目标跟踪结果

    Table  1.   Target tracking results in Plane video sequences

    算法 成功率/% 精度/% AUC/%
    改进KCF算法 99.47 99.20 86.00
    原始KCF算法 69.87 78.93 76.83
    CSK算法 72.46 55.08 75.51
    MOSSE算法 1.34 1.87 7.01
    MEDIANFLOW算法 1.07 0.80 1.91
    MIL算法 36.00 32.00 50.77
    TLD算法 0.27 0.27 19.79
    下载: 导出CSV

    表  2  Car1视频序列中遮挡目标跟踪结果

    Table  2.   Occluded target tracking results in Car1 video sequences

    算法 成功率/% 精度/% AUC/%
    改进KCF算法 86.59 97.73 78.41
    原始KCF算法 5.23 27.50 25.80
    CSK算法 3.42 8.88 17.65
    MOSSE算法 0 3.19 7.59
    MEDIANFLOW算法 0.45 0.68 1.48
    MIL算法 8.86 29.32 29.73
    TLD算法 0.23 0.23 0.23
    下载: 导出CSV

    表  3  Car2视频序列中目标跟踪结果

    Table  3.   Target tracking results in Car2 video sequences

    算法 成功率/% 精度/% AUC/%
    改进KCF算法 88.0 94.60 80.22
    原始KCF算法 14.83 39.68 47.70
    CSK算法 2.60 21.20 30.54
    MOSSE算法 0 0.60 3.49
    MEDIANFLOW算法 1.4 6.40 7.74
    MIL算法 10.2 52.20 50.34
    TLD算法 0 0.20 0.14
    下载: 导出CSV

    表  4  Ship视频序列中目标跟踪结果

    Table  4.   Target tracking results in Ship video sequences

    算法 成功率/% 精度/% AUC/%
    改进KCF算法 85.86 100 80.30
    原始KCF算法 65.00 100 72.60
    CSK算法 47.47 89.90 65.56
    MOSSE算法 0 4.04 12.63
    MEDIANFLOW算法 4.00 30.00 18.00
    MIL算法 7.00 18.00 45.00
    TLD算法 1.00 1.00 1.00
    下载: 导出CSV
  • [1] 孟琭, 杨旭. 目标跟踪算法综述[J]. 自动化学报, 2019, 45(7): 1244-1260. https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO201907003.htm

    MENG L, YANG X. A survey of target tracking algorithms[J]. Acta Automatica Sinica, 2019, 45(7): 1244-1260(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO201907003.htm
    [2] KOPSIAFTIS G, KARANTZALOS K. Vehicle detection and traffic density monitoring from very high resolution satellite video data[C]//2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). Piscataway: IEEE Press, 2015: 1881-1884.
    [3] YANG T, WANG X W, YAO B W, et al. Small moving vehicle detection in a satellite video of an urban area[J]. Sensors, 2016, 16(9): 1528. doi: 10.3390/s16091528
    [4] 赵学敏, 马文坡, 刘兆军. 低轨卫星面阵凝视成像技术研究[J]. 航天返回与遥感, 2007, 28(2): 10-14. doi: 10.3969/j.issn.1009-8518.2007.02.003

    ZHAO X M, MA W P, LIU Z J. Study on area array staring imaging technology for low-orbit satellite[J]. Spacecraft Recovery and Remote Sensing, 2007, 28(2): 10-14(in Chinese). doi: 10.3969/j.issn.1009-8518.2007.02.003
    [5] BOLME D S, BEVERIDEG J R, DRAPER B A, et al. Visual target tracking using adaptive correlation filters[C]//2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2010: 2544-2550.
    [6] HENRIQUES J F, CASEIRO R, MARTINS P, et al. Exploiting the circulant structure of tracking-by-detection with kernels[C]//Proceedings of the European Conference on Computer Vision. Berlin: Springer, 2012: 702-715.
    [7] HENRIQUES J F, CASEIRO R, MARTINS P, et al. High-speed tracking with kernelized correlation filters[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(3): 583-596. doi: 10.1109/TPAMI.2014.2345390
    [8] DU B, SUN Y J, CAI S, et al. Target tracking in satellite videos by fusing the kernel correlation filter and the three-frame-difference algorithm[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(2): 168-172. doi: 10.1109/LGRS.2017.2776899
    [9] XUAN S Y, LI S Y, HAN M F, et al. Tracking in satellite videos by improved correlation filters with motion estimations[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(2): 1074-1086. doi: 10.1109/TGRS.2019.2943366
    [10] HU Z P, YANG D Q, ZHANG K, et al. Target tracking in satellite videos based on convolutional regression network with appearance and motion features[J]. IEEE Journal of Selected Topics in Applied Earth Observation and Remote Sensing, 2020, 13: 783-793. doi: 10.1109/JSTARS.2020.2971657
    [11] SHAO J, DU B, WU C, et al. PASiam: Predicting attention inspired Siamese network, for space-borne satellite video tracking[C]//Proceedings of the IEEE International Conference on Multimedia and Expo. Piscataway: IEEE Press, 2019: 1504-1509.
    [12] MA C Y, YU G. An improved kernel correlation filter for occlusion target tracking[C]//IEEE 4th International Conference on Image, Vision and Computing(ICIVC). Piscataway: IEEE Press, 2019: 674-678.
    [13] HEIMBACH M, EBADI K, WOOD S. Improving target tracking accuracy in video sequences subject to noise and occlusion impediments by combining feature tracking with Kalman filtering[C]//IEEE 52nd Asilomar Conference on Signals, Systems, and Computers. Piscataway: IEEE Press, 2018: 1499-1502.
    [14] 杨剑锋, 张建鹏. 基于核相关滤波的长时间目标跟踪[J]. 激光与光电子学进展, 2019, 56(2): 149-155. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ201902018.htm

    YANG J F, ZHANG J P. Long-term target tracking based on nuclear correlation filtering[J]. Progress in Laser and Optoelectronics, 2019, 56(2): 149-155(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ201902018.htm
    [15] FELZENSZWALB P F, GIRSHICK R B, MCALLESTER D, et al. Target detection with discriminatively trained part-based models[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(9): 1627-1645. doi: 10.1109/TPAMI.2009.167
    [16] HANBAY K, ALPASLAN N. Continuous rotation invariant features for gradient-based texture classification[J]. IEEE Computer Vision and Image Understanding, 2015, 132: 87-101. doi: 10.1016/j.cviu.2014.10.004
    [17] 王暐, 王春平, 李军, 等. 特征融合和模型自适应更新相结合的相关滤波目标跟踪[J]. 光学精密工程, 2016, 24(8): 2059-2066. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201608029.htm

    WANG W, WANG C P, LI J, et al. Correlation filter tracking based on feature fusing and model adaptive updating[J]. Optics and Precision Engineering, 2016, 24(8): 2059-2066(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201608029.htm
    [18] 石龙伟, 邓欣, 王进, 等. 基于光流法和卡尔曼滤波的多目标跟踪[J]. 计算机应用, 2017, 37(S1): 131-136. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJY2017S1029.htm

    SHI L W, DENG X, WANG J, et al. Multiple target tracking based on optical flow and Kalman filtering[J]. Journal of Computer Applications, 2017, 37(S1): 131-136(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSJY2017S1029.htm
    [19] KALAL Z, MIKOLAZYK K, MATAS J. Forward-backward error: Automatic detection of tracking failures[C]//Proceedings of the IEEE International Conference on Pattern Recognition. Piscataway: IEEE Press, 2010: 2756-2759.
    [20] BABENKO B, YANG M H, BELONGIE S. Robust target tracking with online multiple instance learning[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(8): 1619-1632. doi: 10.1109/TPAMI.2010.226
    [21] KALAL Z, MIKOLAZYK K, MATAS J. Tracking-learning-detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 34(7): 1409-1422.
    [22] WU Y, LIM J, YANG M H. Online target tracking: A benchmark[C]//Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2013, 2411-2418.
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  407
  • HTML全文浏览量:  121
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-29
  • 录用日期:  2021-12-27
  • 网络出版日期:  2022-02-15
  • 整期出版日期:  2022-12-20

目录

    /

    返回文章
    返回
    常见问答