留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

机载PLC信道传递函数建模与概率保证分析

戚佳艺 李峭 熊华钢 严若文

戚佳艺, 李峭, 熊华钢, 等 . 机载PLC信道传递函数建模与概率保证分析[J]. 北京航空航天大学学报, 2022, 48(12): 2548-2555. doi: 10.13700/j.bh.1001-5965.2021.0153
引用本文: 戚佳艺, 李峭, 熊华钢, 等 . 机载PLC信道传递函数建模与概率保证分析[J]. 北京航空航天大学学报, 2022, 48(12): 2548-2555. doi: 10.13700/j.bh.1001-5965.2021.0153
QI Jiayi, LI Qiao, XIONG Huagang, et al. Airborne PLC channel modeling by transfer function and its probabilistic guarantee analysis[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(12): 2548-2555. doi: 10.13700/j.bh.1001-5965.2021.0153(in Chinese)
Citation: QI Jiayi, LI Qiao, XIONG Huagang, et al. Airborne PLC channel modeling by transfer function and its probabilistic guarantee analysis[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(12): 2548-2555. doi: 10.13700/j.bh.1001-5965.2021.0153(in Chinese)

机载PLC信道传递函数建模与概率保证分析

doi: 10.13700/j.bh.1001-5965.2021.0153
基金项目: 

国家自然科学基金 62071023

详细信息
    通讯作者:

    李峭, E-mail: avionics@buaa.edu.cn

  • 中图分类号: V221+.3;TB553

Airborne PLC channel modeling by transfer function and its probabilistic guarantee analysis

Funds: 

National Natural Science Foundation of China 62071023

More Information
  • 摘要:

    采用电源线通信(PLC)技术替代部分机载电子设备之间的数据电缆可以简化布线并实现减重。根据机载电源线环境及航空电子通信要求,需要解决信道衰落及噪声干扰条件下PLC实时性能评价问题。针对机载电源线的布线拓扑结构,采用“自底向上”构造电压比方程的形式给出了PLC信道传递函数的建模方法;推导得出信道传递函数、信道增益和瞬时信道容量之间的关系;在有效容量理论框架下,通过论证积压队列的非空概率与服务质量(QoS)指数的关系,使得能够从瞬时信道容量简便地求得延迟违规概率,用以评价实时性能的概率保证。通过仿真验证了延迟违规概率算法的准确性,并得到不同信道传递函数条件下延迟界限与违规概率的关系,说明了信道衰落显著地影响延迟约束下机载PLC系统的概率保证实时通信速率。

     

  • 图 1  PLC信道模型框图

    Figure 1.  Block diagram of PLC channel model

    图 2  机载PLC拓扑结构示意图

    Figure 2.  Schematic diagram of airborne PLC topology

    图 3  树状结构

    Figure 3.  Tree structure

    图 4  阻抗化简过程

    Figure 4.  Impedance reduction process

    图 5  任一单元b的阻抗

    Figure 5.  Impedance of any unit b

    图 6  信道传递函数的幅频曲线

    Figure 6.  Amplitude-frequency curve of channel transfer function

    图 7  随机脉冲噪声的时域响应

    Figure 7.  Time domain response of random impulse noise

    图 8  离散通信系统排队模型

    Figure 8.  Queuing model of discrete communication system

    图 9  不同传输速率下延迟违规概率的仿真结果与分析结果

    Figure 9.  Simulation results and analysis results of delay violation probability under different transmission rates

    图 10  不同信道增益下延迟违规概率与最大延迟关系

    Figure 10.  Relationship between delay violation probability and maximum delay under different channel gain conditions

    图 11  不同最大延迟下延迟违规概率与信道增益关系

    Figure 11.  Relationship between delay violation probability and channel gain under different maximum delay conditions

    表  1  机载PLC信道参数与物理常数

    Table  1.   Airborne PLC channel parameters and physical constants

    参数
    数值
    导线间距/mm 3
    导线半径/mm 1.2
    介电常数/(F·m-1) 8.85×10-12
    真空磁导率/(H·m-1) 4π×10-7
    电导率/(S·m-1) 5.8×10-7
    下载: 导出CSV
  • [1] NOUVEL F, LAMPE L. Power line communications: Principles, standards and applications from multimedia to smart grid[M]. 2nd ed. New York: Wiley Publishing, 2016.
    [2] DEGARDIN V, JUNQUA I, LIENARD M, et al. Theoretical approach to the feasibility of power-line communication in aircrafts[J]. IEEE Transactions on Vehicular Technology, 2013, 62(3): 1362-1366. doi: 10.1109/TVT.2012.2228245
    [3] GODO E L. Flight control system with remote electronics[C]//The 21st Digital Avionics Systems Conference. Piscataway: IEEE Press, 2002, 2: 13B1.
    [4] O'BRIEN J, KULSHRESHTHA A. Distributed and remote control of flight control actuation using power line communications[C]//IEEE/AIAA 27th Digital Avionics Systems Conference. Piscataway: IEEE Press, 2008: 1. D. 4-1-1. D. 4-12.
    [5] TANG L T, SO P L, GUNAWAN E, et al. Characterization and modeling of in-building power lines for high-speed data transmission[J]. IEEE Transactions on Power Delivery, 2003, 18(1): 69-77. doi: 10.1109/TPWRD.2002.803796
    [6] PHILIPPS H. Modeling of powerline communication channels[C]//Proceedings of 3rd International Symposium on Power-Line Communications and its Applications, 1999: 14-21.
    [7] GALLI S, BANWELL T C. A deterministic frequency-domain model for the indoor power line transfer function[J]. IEEE Journal on Selected Areas in Communications, 2006, 24(7): 1304-1316. doi: 10.1109/JSAC.2006.874428
    [8] ESMAILIAN T, KSCHISCHANG F R, GULAK P G. In-building power lines as high-speed communication channels: Channel characterization and a test channel ensemble[J]. International Journal of Communication Systems, 2003, 16(5): 381-400. doi: 10.1002/dac.596
    [9] MENG H, CHEN S, GUAN Y, et al. Modeling of transfer characteristics for the broadband power line communication channel[J]. IEEE Transactions on Power Delivery, 2004, 19(3): 1057-1064. doi: 10.1109/TPWRD.2004.824430
    [10] TONELLO A M, VERSOLATTO F. Bottom-up statistical PLC channel modeling—Part I: Random topology model and efficient transfer function computation[J]. IEEE Transactions on Power Delivery, 2011, 26(2): 891-898. doi: 10.1109/TPWRD.2010.2096518
    [11] 周海勇. 飞机电力线载波数据通信关键技术研究[D]. 南京: 南京航空航天大学, 2005.

    ZHOU H Y. Research on key technologies of aircraft power line carrier data communication[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2005(in Chinese).
    [12] BIGLIERI E. Coding and modulation for a horrible channel[J]. IEEE Communications Magazine, 2003, 41(5): 92-98. doi: 10.1109/MCOM.2003.1200107
    [13] WU D, NEGI R. Effective capacity: A wireless link model for support of quality of service[J]. IEEE Transactions on Wireless Communications, 2003, 2(4): 630-643.
    [14] AMJAD M, MUSAVIAN L, REHMANI M H. Effective capacity in wireless networks: A comprehensive survey[J]. IEEE Communications Surveys & Tutorials, 2019, 21(4): 3007-3038.
    [15] JEONG Y, SHIN H, WIN M Z. H-transforms for wireless communication[J]. IEEE Transactions on Information Theory, 2015, 61(7): 3773-3809. doi: 10.1109/TIT.2015.2433264
    [16] YOU M, SUN H, JIANG J, et al. Unified framework for the effective rate analysis of wireless communication systems over MISO fading channels[J]. IEEE Transactions on Communications, 2017, 65(4): 1775-1785. doi: 10.1109/TCOMM.2016.2638901
    [17] ALHENNAWI H R, EL AYADI M M H, ISMAIL M H, et al. Closed-form exact and asymptotic expressions for the symbol error rate and capacity of the H-function fading channel[J]. IEEE Transactions on Vehicular Technology, 2016, 65(4): 1957-1974. doi: 10.1109/TVT.2015.2424591
    [18] CHOUDHURY G L, LUCANTONI D M. Squeezing the most out of ATM[J]. IEEE Transactions on Communications, 1996, 44(2): 203-217. doi: 10.1109/26.486613
    [19] TONELLO A M, VERSOLATTO F. Bottom-up statistical PLC channel modeling—Part Ⅱ: Inferring the statistics[J]. IEEE Transactions on Power Delivery, 2010, 25(4): 2356-2363. doi: 10.1109/TPWRD.2010.2053561
    [20] CORRIPIO F, ARRABAL J, DEL RIOL D, et al. Analysis of the cyclic short-term variation of indoor power line channels[J]. IEEE Journal on Selected Areas in Communications, 2006, 24(7): 1327-1338. doi: 10.1109/JSAC.2006.874402
    [21] 台新. 电力线通信信道噪声分析与建模仿真[D]. 北京: 北京邮电大学, 2013.

    TAI X. Analysis and simulation for the noise in power line communication channel[D]. Beijing: Beijing University of Posts and Telecommunications, 2013(in Chinese).
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  277
  • HTML全文浏览量:  93
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-29
  • 录用日期:  2021-06-29
  • 网络出版日期:  2021-07-13
  • 整期出版日期:  2022-12-20

目录

    /

    返回文章
    返回
    常见问答