留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

复合材料层板低速倾斜冲击损伤分析

张超 刘建春 方鑫

张超, 刘建春, 方鑫等 . 复合材料层板低速倾斜冲击损伤分析[J]. 北京航空航天大学学报, 2022, 48(12): 2388-2397. doi: 10.13700/j.bh.1001-5965.2021.0154
引用本文: 张超, 刘建春, 方鑫等 . 复合材料层板低速倾斜冲击损伤分析[J]. 北京航空航天大学学报, 2022, 48(12): 2388-2397. doi: 10.13700/j.bh.1001-5965.2021.0154
ZHANG Chao, LIU Jianchun, FANG Xinet al. Damage analysis in composite laminates under low velocity oblique impact[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(12): 2388-2397. doi: 10.13700/j.bh.1001-5965.2021.0154(in Chinese)
Citation: ZHANG Chao, LIU Jianchun, FANG Xinet al. Damage analysis in composite laminates under low velocity oblique impact[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(12): 2388-2397. doi: 10.13700/j.bh.1001-5965.2021.0154(in Chinese)

复合材料层板低速倾斜冲击损伤分析

doi: 10.13700/j.bh.1001-5965.2021.0154
基金项目: 

江苏省自然科学基金 BK20180855

机械结构力学及控制国家重点实验室开放课题 MCMS-E-0219Y01

详细信息
    通讯作者:

    张超, E-mail: zhangchao@ujs.edu.cn

  • 中图分类号: TB332

Damage analysis in composite laminates under low velocity oblique impact

Funds: 

Natural Science Foundation of Jiangsu Province BK20180855

Research Fund of State Key Laboratory of Mechanics and Control of Mechanical Structures MCMS-E-0219Y01

More Information
  • 摘要:

    纤维增强复合材料层板对低速冲击事件敏感,冲击产生的损伤会导致材料结构承载性能及使用寿命大幅下降。基于此,提出了一种基于连续介质损伤力学的有限元模型,研究了复合材料层板低速倾斜冲击力学行为。采用Hashin准则结合渐进退化模型预测层内损伤起始和演化;采用界面单元结合双线性Traction-Separation本构关系模拟层间分层;编写用户材料VUMAT子程序,实现基于ABAQUS/Explicit软件平台的数值求解。数值计算结果与现有正冲击下实验数据吻合较好,验证了模型的有效性。探讨了冲击角度、冲击能量对复合材料层板倾斜冲击力学性能的影响,分析倾斜冲击下层板损伤模式及失效机理,为复合材料结构倾斜冲击问题数值分析提供参考。

     

  • 图 1  复合材料层板低速正冲击有限元模型

    Figure 1.  Finite element model of composite laminates under low velocity normal impact

    图 2  三种冲击能量下数值与实验冲击力-时间曲线比较

    Figure 2.  Comparison of numerical and experimental impact force-time curves under three impact energy levels

    图 3  三种冲击能量下数值与实验冲击能量-时间曲线比较

    Figure 3.  Comparison of numerical and experimental impact energy-time curves under three impact energy levels

    图 4  14.27 J冲击能量下复合材料层板45°低速倾斜冲击过程

    Figure 4.  Low-velocity oblique impact of composite laminates under impact energy of 14.27 J at 45°

    图 5  不同冲击角度冲击过程中冲头的动能变化

    Figure 5.  Kinetic energy variation of impactor during impact at different impact angles

    图 6  不同冲击角度冲击过程中冲头的冲击力变化

    Figure 6.  Impact force variation of impactor during impact at different impact angles

    图 7  不同冲击角度下复合材料层板基体损伤分布

    Figure 7.  Matrix cracking in damaged composite laminates during impact at different impact angles

    图 8  不同冲击角度下复合材料层板分层损伤分布

    Figure 8.  Delamination in damaged composite laminates during impact at different impact angles

    图 9  不同冲击能量冲击过程中冲头的动能变化

    Figure 9.  Kinetic energy variation of impactor during impact at different impact energies

    图 10  不同冲击能量冲击过程中冲头的冲击力变化

    Figure 10.  Impact force variation of impactor during impact at different impact energies

    图 11  不同冲击能量下典型层损伤分布情况

    Figure 11.  Damage distribution of typical layer under different impact energies

    图 12  不同冲击角度和冲击能量下基体损伤变化

    Figure 12.  Variation of matrix damage with different impact angles and impact energies

    表  1  单向复合材料性能参数

    Table  1.   Material properties of unidirectional composite

    参数 数值
    密度/(kg·m-3) 1 600
    弹性性能/GPa E11=153; E22= E33=10.3
    G12= G13=6;G23=3.7
    v12= v13=0.3; v23=0.4
    强度性能/MPa XT=2 537; XC=1 580
    YT=82; YC=236; S=117.45
    S12= S13=90; S23=40
    断裂韧性/(N·mm-1) Gft= Gfc =10; Gmt= Gmc=1
    下载: 导出CSV

    表  2  界面材料性能参数

    Table  2.   Material properties of interface material

    参数 数值
    密度/(kg·m-3) 1 200
    K/(N·mm-3) 200 000
    N/MPa 62.3
    S=T/MPa 92.3
    GⅠC/(N·mm-1) 0.28
    GⅡC= GⅢC/(N·mm-1) 0.79
    下载: 导出CSV
  • [1] 崔旭, 李斌, 王朔, 等. GLARE层板低速冲击的实验与模拟[J]. 航空材料学报, 2019, 39(2): 68-74. https://www.cnki.com.cn/Article/CJFDTOTAL-HKCB201902011.htm

    CUI X, LI B, WANG S, et al. Simulation on low velocity impact to GLARE laminate based on ABAQUS[J]. Journal of Aeronautical Materials, 2019, 39(2): 68-74(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKCB201902011.htm
    [2] SOLVER I, THORSSON A, SUNIL P, et al. Experimental investigation of composite laminates subject to low-velocity edge on impact and compression after impact[J]. Composite Structures, 2018, 186: 335-346. doi: 10.1016/j.compstruct.2017.11.084
    [3] HESAM Y, ALI N, HAMED S, et al. Experimental and numerical investigation of low velocity impact on electrospun nanofiber modified composite laminates[J]. Composite Structures, 2018, 200: 507-514. doi: 10.1016/j.compstruct.2018.05.146
    [4] DAMGHANI M, ERSOY N, PIORKOWSKI M, et al. Experimental evaluation of residual tensile strength of hybrid composite aerospace materials after low velocity impact[J]. Composites Part B, 2019, 179: 107537. doi: 10.1016/j.compositesb.2019.107537
    [5] MIAO H R, WU Z Y, YING Z P, et al. The numerical and experimental investigation on low-velocity impact response of composite panels: Effect of fabric architecture[J]. Composite Structures, 2019, 227: 111343. doi: 10.1016/j.compstruct.2019.111343
    [6] NATSUKI T, YOSHIZAWA K, BAO L M, et al. Theoretical analysis of low-velocity impact response in two-layer laminated plates with an elastic medium layer[J]. Composite Structures, 2017, 162: 308-312. doi: 10.1016/j.compstruct.2016.11.069
    [7] 王计真, 刘小川. 预加载复合材料层合薄板低速冲击理论分析[J]. 应用力学学报, 2018, 35(6): 1248-1253. https://www.cnki.com.cn/Article/CJFDTOTAL-YYLX201806011.htm

    WANG J Z, LIU X C. Theoretical analysis of low speed impact of preloaded composite laminates[J]. Chinese Journal of Applied Mechanics, 2018, 35(6): 1248-1253(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YYLX201806011.htm
    [8] PEREZ M, MARTINEZ X, OLLER S, et al. Impact damage prediction in carbon fiber-reinforced laminated composite using the matrix-reinforced mixing theory[J]. Composite Structures, 2013, 104: 239-248. doi: 10.1016/j.compstruct.2013.04.021
    [9] ZHOU Y Z, WEN P Y, WANG S N. Finite element analysis of a modified progressive damage model for composite laminates under low-velocity impact[J]. Composite Structures, 2019, 225: 111113. doi: 10.1016/j.compstruct.2019.111113
    [10] WAN Y, DIAO C Y, YANG B, et al. GF/epoxy laminates embedded with wire nets: A way to improve the low-velocity impact resistance and energy absorption ability[J]. Composite Structures, 2018, 202: 818-835. doi: 10.1016/j.compstruct.2018.04.041
    [11] JIANG Y X, ZHANG B Y, WEI J S, et al. Study on the impact resistance of polyurea-steel composite plates to low velocity impact[J]. International Journal of Impact Engineering, 2019, 133: 103357. doi: 10.1016/j.ijimpeng.2019.103357
    [12] FENG D, AYMERICH F. Finite element modelling of damage induced by low-velocity impact on composite laminates[J]. Composite Structures, 2014, 108: 160-171.
    [13] ZHANG C, DUODU E, GU J N, et al. Finite element modeling of damage development in cross-ply composite laminates subjected to low velocity impact[J]. Composite Structures, 2017, 173: 219-227. doi: 10.1016/j.compstruct.2017.04.017
    [14] PASCAL F, DORICAL O, NAVARRO P, et al. Impact damage prediction in thin woven composite laminates. Part Ⅰ: Modeling strategy and validation[J]. Composite Structures, 2018, 190: 32-42. doi: 10.1016/j.compstruct.2018.02.007
    [15] PASCAL F, ROGANI A, MAHMOUD B, et al. Impact damage prediction in thin woven composite laminates. Part Ⅱ: Application to normal and oblique impacts on sandwich structure[J]. Composite Structures, 2018, 190: 43-51. doi: 10.1016/j.compstruct.2018.02.013
    [16] KUMAR R, MUKHOPADHYAY T, NASKAR S, et al. Stochastic low-velocity impact analysis of sandwich plates including the effects of obliqueness and twist[J]. Thin-Walled Structures, 2019, 145: 106411. doi: 10.1016/j.tws.2019.106411
    [17] 徐瑀童, 左洪福, 陆晓华, 等. 复合材料低速冲击损伤评估数值分析与试验研究[J]. 振动与冲击, 2019, 38(3): 149-155. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201903022.htm

    XU Y T, ZUO H F, LU X H, et al. Numerical analysis and experimental study on low speed impact damage evaluation of composite materials[J]. Journal of Vibration and Shock, 2019, 38(3): 149-155(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201903022.htm
    [18] LAPCZYK I, HURTADO J. Progressive damage modeling in fiber reinforced materials[J]. Composites Part A, 2007, 38(11): 2333-2341. doi: 10.1016/j.compositesa.2007.01.017
    [19] SHI Y, SWAIT T, SOUTIS C. Modelling damage evolution in composite laminates subjected to low velocity impact[J]. Composite Structures, 2012, 94(9): 2902-2913. doi: 10.1016/j.compstruct.2012.03.039
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  315
  • HTML全文浏览量:  98
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-29
  • 录用日期:  2021-07-09
  • 网络出版日期:  2021-07-30
  • 整期出版日期:  2022-12-20

目录

    /

    返回文章
    返回
    常见问答