留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种新的基于信号导频的射频指纹识别方法

曾盛 朱丰超 杨剑

曾盛, 朱丰超, 杨剑等 . 一种新的基于信号导频的射频指纹识别方法[J]. 北京航空航天大学学报, 2022, 48(12): 2566-2575. doi: 10.13700/j.bh.1001-5965.2021.0164
引用本文: 曾盛, 朱丰超, 杨剑等 . 一种新的基于信号导频的射频指纹识别方法[J]. 北京航空航天大学学报, 2022, 48(12): 2566-2575. doi: 10.13700/j.bh.1001-5965.2021.0164
ZENG Sheng, ZHU Fengchao, YANG Jianet al. A new RF fingerprint identification method based on preamble of signal[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(12): 2566-2575. doi: 10.13700/j.bh.1001-5965.2021.0164(in Chinese)
Citation: ZENG Sheng, ZHU Fengchao, YANG Jianet al. A new RF fingerprint identification method based on preamble of signal[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(12): 2566-2575. doi: 10.13700/j.bh.1001-5965.2021.0164(in Chinese)

一种新的基于信号导频的射频指纹识别方法

doi: 10.13700/j.bh.1001-5965.2021.0164
基金项目: 

国家自然科学基金 61601474

国家自然科学基金 62071480

详细信息
    通讯作者:

    朱丰超, E-mail: fengchao_zhu@126.com

  • 中图分类号: TN918.91

A new RF fingerprint identification method based on preamble of signal

Funds: 

National Natural Science Foundation of China 61601474

National Natural Science Foundation of China 62071480

More Information
  • 摘要:

    现有基于深度学习的射频指纹识别技术大多采用原始数据样本作为网络输入,未考虑信号携带内容对分类结果产生的影响,网络结构相对单一。为此,针将信号导频部分作为网络输入展开了研究,提出了一种新的导频提取算法,对10个ADALM-PLUTO软件定义无线电设备(SDR)辐射出的信号提取其导频,并建立了3种不同距离条件下的导频数据集。提出将Inception网络结构用于射频指纹识别,在10 m无线传输距离下达到了98.58%的分类精度,相较于现有基于AlexNet网络改进的卷积神经网络(CNN),分类精度有所提升。

     

  • 图 1  通信系统模型

    Figure 1.  Communication system model

    图 2  物理层帧结构

    Figure 2.  Frame structure of physical layer

    图 3  发送端信号处理过程

    Figure 3.  Signal processing at transmitter

    图 4  无线通信流程框架

    Figure 4.  Frame diagram of wireless communication

    图 5  精频率补偿算法框图

    Figure 5.  Block diagram of fine frequency compensation algorithm

    图 6  滑动过程

    Figure 6.  Sliding process

    图 7  算法框架

    Figure 7.  Framework of algorithm

    图 8  导频检测结果

    Figure 8.  Preamble extraction results

    图 9  本文使用的Inception网络结构

    Figure 9.  Inception network used in this paper

    图 10  Inception模块结构

    Figure 10.  Structure of Inception module

    图 11  ADALM-PLUTO软件定义无线电设备和工作站

    Figure 11.  ADALM-PLUTO software-defined radio equipment and workstation

    图 12  三种网络的分类结果

    Figure 12.  Classification results of three kinds of networks

    图 13  1 m和10 m距离下3种网络分类结果对比

    Figure 13.  Comparisons of classification results of three networks at 1 m and 10 m

    表  1  2.45 GHz Symbol-to-Chip映射关系

    Table  1.   Mapping relationship of 2.45 GHz Symbol-to-Chip

    si chipi1×32
    s0:0000 chip01×32:1 1 0 1 1 0 0 1 1 1 0 0 0 0 1 1 0 1 0 1 0 0 1 0 0 0 1 0 1 1 1 0
    s1:0001 chip11×32:1 1 1 0 1 1 0 1 1 0 0 1 1 1 0 0 0 0 1 1 0 1 0 1 0 0 1 0 0 0 1 0
    s2:0010 chip21×32:0 0 1 0 1 1 1 0 1 1 0 1 1 0 0 1 1 1 0 0 0 0 1 1 0 1 0 1 0 0 1 0
    s3:0011 chip31×32:0 0 1 0 0 0 1 0 1 1 1 0 1 1 0 1 1 0 0 1 1 1 0 0 0 0 1 1 0 1 0 1
    s4:0100 chip41×32:0 1 0 1 0 0 1 0 0 0 1 0 1 1 1 0 1 1 0 1 1 0 0 1 1 1 0 0 0 0 1 1
    s5:0101 chip51×32:0 0 1 1 0 1 0 1 0 0 1 0 0 0 1 0 1 1 1 0 1 1 0 1 1 0 0 1 1 1 0 0
    s6:0110 chip61×32:1 1 0 0 0 0 1 1 0 1 0 1 0 0 1 0 0 0 1 0 1 1 1 0 1 1 0 1 1 0 0 1
    s7:0111 chip71×32:1 0 0 1 1 1 0 0 0 0 1 1 0 1 0 1 0 0 1 0 0 0 1 0 1 1 1 0 1 1 0 1
    s8:1000 chip81×32:1 0 0 0 1 1 0 0 1 0 0 1 0 1 1 0 0 0 0 0 0 1 1 1 0 1 1 1 1 0 1 1
    s9:1001 chip91×32:1 0 1 1 1 0 0 0 1 1 0 0 1 0 0 1 0 1 1 0 0 0 0 0 0 1 1 1 0 1 1 1
    s10:1010 chip101×32:0 1 1 1 1 0 1 1 1 0 0 0 1 1 0 0 1 0 0 1 0 1 1 0 0 0 0 0 0 1 1 1
    s11:1011 chip111×32:0 1 1 1 0 1 1 1 1 0 1 1 1 0 0 0 1 1 0 0 1 0 0 1 0 1 1 0 0 0 0 0
    s12:1100 chip121×32:0 0 0 0 0 1 1 1 0 1 1 1 1 0 1 1 1 0 0 0 1 1 0 0 1 0 0 1 0 1 1 0
    s13:1101 chip131×32:0 1 1 0 0 0 0 0 0 1 1 1 0 1 1 1 1 0 1 1 1 0 0 0 1 1 0 0 1 0 0 1
    s14:1110 chip141×32:1 0 0 1 0 1 1 0 0 0 0 0 0 1 1 1 0 1 1 1 1 0 1 1 1 0 0 0 1 1 0 0
    s15:1111 chip151×32:1 1 0 0 1 0 0 1 0 1 1 0 0 0 0 0 0 1 1 1 0 1 1 1 1 0 1 1 1 0 0 0
    下载: 导出CSV

    表  2  网络复杂度对比

    Table  2.   Network complexity comparison

    网络 Flops/次 网络参数量 网络训练时间/s
    Inception 183 066 880 137 610 4 166
    文献[11-12] 348 888 640 146 700 1 218
    文献[14] 126 8891 200 188 590 2 421
    下载: 导出CSV
  • [1] 任品毅, 徐东阳. 无线物理层认证技术: 昨天、今天和明天[J]. 中兴通讯技术, 2020, 26(4): 58-66. https://www.cnki.com.cn/Article/CJFDTOTAL-ZXTX202004016.htm

    REN P Y, XU D Y. Wireless physical layer authentication technology: Yesterday, today, and tomorrow[J]. ZTE Communications, 2020, 26(4): 58-66(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZXTX202004016.htm
    [2] 俞佳宝, 胡爱群, 朱长明, 等. 无线通信设备的射频指纹提取与识别方法[J]. 密码学报, 2016, 3(5): 433-446. https://www.cnki.com.cn/Article/CJFDTOTAL-MMXB201605002.htm

    YU J B, HU A Q, ZHU C M, et al. RF fingerprinting extraction and identification of wireless communication devices[J]. Journal of Cryptologic Research, 2016, 3(5): 433-446(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-MMXB201605002.htm
    [3] 张振, 贾济铖, 康健, 等. 射频指纹识别技术方法综述[J]. 无线电通信技术, 2021, 47(3): 249-258. https://www.cnki.com.cn/Article/CJFDTOTAL-WXDT202103001.htm

    ZHANG Z, JIA J C, KANG J, et al. Overview of RF fingerprint identification technology methods[J]. Radio Communications Technology, 2021, 47(3): 249-258(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-WXDT202103001.htm
    [4] 曾勇虎, 陈翔, 林云, 等. 射频指纹识别的研究现状及趋势[J]. 电波科学学报, 2020, 35(3): 305-315. https://www.cnki.com.cn/Article/CJFDTOTAL-DBKX202003001.htm

    ZENG Y H, CHEN X, LIN Y, et al. Review of radio frequency fingerprinting identification[J]. Chinese Journal of Radio Science, 2020, 35(3): 305-315(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DBKX202003001.htm
    [5] CHOE H C, POOLE C E, YU A M, et al. Novel identification of intercepted signals from unknown radio transmitters[C] // Proceedings of SPIE-The International Society for Optical Engineering, 1995, 2491: 504-517.
    [6] 郑娜娥, 王盛, 张靖志, 等. 基于射频指纹的辐射源个体识别技术综述[J]. 信息工程大学学报, 2020, 21(3): 285-289. https://www.cnki.com.cn/Article/CJFDTOTAL-XXGC202003006.htm

    ZHENG N E, WANG S, ZHANG J Z, et al. Overview of emitter identification techniques based on radio frequency fingerprinting[J]. Journal of Information Engineering University, 2020, 21(3): 285-289(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XXGC202003006.htm
    [7] URETEN O, SERINKEN N. Detection of radio transmitter turn-on transients[J]. Electronics Letters, 1999, 35(23): 1996-1997.
    [8] KENNEDY I O, SCANLON P, MULLANY F J, et al. Radio transmitter fingerprinting: A steady state frequency domain approach[C] // 2008 IEEE 68th Vehicular Technology Conference. Piscataway: IEEE Press, 2008: 1-5.
    [9] SUSKI W C, TEMPLE M A, MENDENHALL M J, et al. Using spectral fingerprints to improve wireless network security[C] //IEEE GLOBECOM 2008-2008 IEEE Global Telecommunications Conference. Piscataway: IEEE Press, 2008: 1-5.
    [10] 王培. 基于稳态信号的射频指纹算法的研究[D]. 成都: 电子科技大学, 2020: 20-52.

    WANG P. Research on RF fingerprint algorithm based on steady state signal[D]. Chengdu: University of Electronic Science and Technology of China, 2020: 20-52(in Chinese).
    [11] RIYAZ S, SANKHE K, IOANNIDIS S, et al. Deep learning convolutional neural networks for radio identification[J]. IEEE Communications Magazine, 2018, 56(9): 146-152.
    [12] SANKHE K, BELGIOVINE M, FAN Z, et al. ORACLE: Optimized radio classification through convolutional neural networks[EB/OL]. (2018-12-03)[2020-12-13]. https://arxiv.org/abs/1812.01124v1.
    [13] 秦嘉. 基于深度学习的通信辐射源个体识别[D]. 北京: 北京邮电大学, 2019: 22-23.

    QIN J. Individual identification of communication emmiter based on deep learning[D]. Beijing: Beijing University of Posts and Telecommunications, 2019: 22-23(in Chinese).
    [14] ELMAGHBUB A, HAMDAOUI B. Leveraging hardware-impaired out-of-band information through deep neural networks for robust wireless device classification[EB/OL]. (2020-04-23)[2021-03-28]. https://arxiv.org/abs/2004.11126v1.
    [15] IEEE 802.15 Working Group. IEEE stardard for low-rate wireless networks: IEEE 802.15.4[S]. Piscataway: IEEE, 2006.
    [16] SZEGEDY C, LIU W, JIA Y, et al. Going deeper with convolutions[EB/OL]. (2014-09-17)[2021-03-28]. https://arxiv.org/abs/1409.4842.
    [17] RICE M. Digital communications: A discrete-time approach[M]. New York: Pearson Education India, 2009.
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  482
  • HTML全文浏览量:  101
  • PDF下载量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-01
  • 录用日期:  2021-06-20
  • 网络出版日期:  2021-07-12
  • 整期出版日期:  2022-12-20

目录

    /

    返回文章
    返回
    常见问答