留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于多尺度残差卷积网络的HEVC视频隐写分析

张敏 李赵红 刘金豆 张珍珍

张敏, 李赵红, 刘金豆, 等 . 基于多尺度残差卷积网络的HEVC视频隐写分析[J]. 北京航空航天大学学报, 2021, 47(11): 2226-2233. doi: 10.13700/j.bh.1001-5965.2021.0179
引用本文: 张敏, 李赵红, 刘金豆, 等 . 基于多尺度残差卷积网络的HEVC视频隐写分析[J]. 北京航空航天大学学报, 2021, 47(11): 2226-2233. doi: 10.13700/j.bh.1001-5965.2021.0179
ZHANG Min, LI Zhaohong, LIU Jindou, et al. Steganalysis for HEVC video based on multi-scale residual convolution network[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(11): 2226-2233. doi: 10.13700/j.bh.1001-5965.2021.0179(in Chinese)
Citation: ZHANG Min, LI Zhaohong, LIU Jindou, et al. Steganalysis for HEVC video based on multi-scale residual convolution network[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(11): 2226-2233. doi: 10.13700/j.bh.1001-5965.2021.0179(in Chinese)

基于多尺度残差卷积网络的HEVC视频隐写分析

doi: 10.13700/j.bh.1001-5965.2021.0179
基金项目: 

北京市教育委员会科研计划 KM202110015004

详细信息
    通讯作者:

    张敏, E-mail: zhangmin3@chinatelecom.cn

  • 中图分类号: V221+.3;TB553

Steganalysis for HEVC video based on multi-scale residual convolution network

Funds: 

The Scientific Research Common Program of Beijing Municipal Commission of Education KM202110015004

More Information
  • 摘要:

    图片、语音、视频等多媒体形式的信息交流在网络通信中占有重要地位,同时也有很多非法信息的传播隐匿于此。隐写分析是甄别隐秘信息是否存在的有效手段,提出了一种通用的基于多尺度残差卷积网络的HEVC视频隐写分析算法。网络主体由残差计算、特征提取和二分类3部分构成,其中在特征提取部分针对性地提出了残差卷积层、多尺度残差卷积模块及隐写分析残差块。实验结果表明:所提算法基于视频像素域分析网络的检测率高达99.75%,比传统的手工提取特征方法具有更大的优势。

     

  • 图 1  帧间预测阶段的PU划分模式

    Figure 1.  PU partition modes during inter-frame prediction

    图 2  隐写视频像素域变化分析

    Figure 2.  Analysis of change in pixel domain of a steganographic video

    图 3  多尺度隐写分析网络结构

    Figure 3.  Multi-scale steganalysis network structure

    图 4  TanH的函数图像

    Figure 4.  Function graph of TanH

    图 5  多尺度残差卷积模块

    Figure 5.  Multi-scale residual convolution module

    图 6  隐写分析残差块

    Figure 6.  Steganalysis residual block

    图 7  隐写分析基础网络

    Figure 7.  BaseNet for steganalysis

    图 8  添加残差卷积层的隐写分析网络

    Figure 8.  Steganalysis network with residual convolution layer

    图 9  不使用隐写分析残差块的网络结构

    Figure 9.  Network structure without steganalysis residual block

    表  1  PU划分类型与整数的映射规则

    Table  1.   PU partition types and integer mapping rule

    PU划分类型 映射整数
    2N×2N 0
    N×N 1
    N×2N 2
    2N×N 3
    nL×2N 4
    nR×2N 5
    2N×nU 6
    2N×nD 7
    下载: 导出CSV

    表  2  实验结果对比

    Table  2.   Comparison of experimental results

    算法 检测率/%
    CGPD传统特征 91.36
    NRCNN 99.03
    MSSN 99.75
    下载: 导出CSV
  • [1] JAINSKY J S, KUNDUR D, HALVERSON D R. Towards digital video steganalysis using asymptotic memoryless detection[C]//Proceedings of Multimedia & Security, 2007: 161-167.
    [2] WU H T, LIU Y, HUANG J, et al. Improved steganalysis algorithm against motion vector based video steganography[C]//IEEE International Conference on Image Processing. Piscataway: IEEE Press, 2014: 5512-5516.
    [3] 孔维国, 王宏霞, 王科人, 等. 基于转移概率矩阵的H. 264/AVC视频帧内预测模式信息隐藏检测算法[J]. 四川大学学报(自然科学学报), 2014, 51(6): 1183-1191. https://www.cnki.com.cn/Article/CJFDTOTAL-SCDX201406014.htm

    KONG W G, WANG H X, WANG K R, et al. Steganalysis of intra-prediction mode modulated information hiding algorithms based on transition probability matrix for H. 264/AVC video[J]. Journal of Sichuan University (Natural Science Edition), 2014, 51(6): 1183-1191(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SCDX201406014.htm
    [4] NIE Q, XU X, FENG B, et al. Defining embedding distortion for intra prediction mode-based video steganography[J]. Computers, Materials & Continua, 2018, 55(1): 59-70. http://qikan.cqvip.com/Qikan/Article/Detail?id=7100590268
    [5] 盛琪, 王让定, 黄美玲, 等. 一种针对HEVC预测模式隐写的检测算法[J]. 光电子·激光, 2017, 28(4): 433-440. https://www.cnki.com.cn/Article/CJFDTOTAL-GDZJ201704014.htm

    SHENG Q, WANG R D, HUANG M L, et al. A prediction mode steganalysis detection algorithm for HEVC[J]. Journal of Optoelectronics·Laser, 2017, 28(4): 433-440(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GDZJ201704014.htm
    [6] LI Z, MENG L, XU S, et al. A HEVC video steganalysis algorithm based on PU partition modes[J]. Computers, Materials & Continua, 2019, 58(2): 563-574. http://doc.paperpass.com/journal/20190032jsjclhlxtyw.html
    [7] HUANG K, SUN T, JIANG X, et al. Combined features for steganalysis against PU partition mode-based steganography in HEVC[J]. Multimedia Tools and Applications, 2020, 79(41): 31147-31164. doi: 10.1007/s11042-020-09435-y
    [8] YANG Y, LI Z, XIE W, et al. High capacity and multilevel information hiding algorithm based on PU partition modes for HEVC videos[J]. Multimedia Tools and Applications, 2019, 78(7): 8423-8446. doi: 10.1007/s11042-018-6859-7
    [9] QIAN Y, DONG J, WANG W, et al. Deep learning for steganalysis via convolutional neural networks[C]//Proceedings of SPIE-The International Society for Optical Engineering, 2015, 9409: 94090J.
    [10] YE J, NI J, YI Y. Deep learning hierarchical representations for image steganalysis[J]. IEEE Transactions on Information Forensics and Security, 2017, 12(11): 2545-2557. doi: 10.1109/TIFS.2017.2710946
    [11] ZENG J, TAN S, LI B, et al. Large-scale JPEG image steganalysis using hybrid deep-learning framework[J]. IEEE Transactions on Information Forensics and Security, 2018, 13(5): 1200-1214. doi: 10.1109/TIFS.2017.2779446
    [12] BOROUMAND M, CHEN M, FRIDRICH J. Deep residual network for steganalysis of digital images[J]. IEEE Transactions on Information Forensics and Security, 2019, 14(5): 1181-1193. doi: 10.1109/TIFS.2018.2871749
    [13] LIU P, LI S. Steganalysis of intra prediction mode and motion vector-based steganography by noise residual convolutional neural network[C]//3rd Annual International Conference on Cloud Technology and Communication Engineering, 2020, 719: 012068.
    [14] 黄雄波, 胡永健, 王宇飞. 针对视频运动向量隐写的深度神经网络检测方法[J]. 华南理工大学学报(自然科学版), 2020, 48(8): 5-13. https://www.cnki.com.cn/Article/CJFDTOTAL-HNLG202008001.htm

    HUANG X B, HU Y J, WANG Y F. A detection method with deep neural networks for video motion vector steganography[J]. Journal of South China University of Technology(Natural Science Edition), 2020, 48(8): 5-13(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HNLG202008001.htm
    [15] XIE W, LI Z, WANG J, et al. An information hiding algorithm for HEVC videos based on PU partitioning modes[C]//International Conference on Cloud Computing and Security, 2018: 252-264.
    [16] LI Z, MENG L, JIANG X, et al. High capacity HEVC video hiding algorithm based on EMD coded PU partition modes[J]. Symmetry, 2019, 11(8): 1015. doi: 10.3390/sym11081015
    [17] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2016: 770-778.
    [18] ZEILER M D. ADADLTA: An adaptive learning rate method[EB/OL]. (2012-10-22)[2021-04-01]. https://arxiv.org/abs/1212.5701.
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  393
  • HTML全文浏览量:  94
  • PDF下载量:  124
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-07
  • 录用日期:  2021-05-09
  • 网络出版日期:  2021-11-20

目录

    /

    返回文章
    返回
    常见问答