留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用于遥感图像变化检测的全尺度特征聚合网络

刘国强 房胜 李哲

刘国强, 房胜, 李哲等 . 用于遥感图像变化检测的全尺度特征聚合网络[J]. 北京航空航天大学学报, 2022, 48(8): 1464-1470. doi: 10.13700/j.bh.1001-5965.2021.0522
引用本文: 刘国强, 房胜, 李哲等 . 用于遥感图像变化检测的全尺度特征聚合网络[J]. 北京航空航天大学学报, 2022, 48(8): 1464-1470. doi: 10.13700/j.bh.1001-5965.2021.0522
LIU Guoqiang, FANG Sheng, LI Zheet al. A full-scale feature aggregation network for remote sensing image change detection[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(8): 1464-1470. doi: 10.13700/j.bh.1001-5965.2021.0522(in Chinese)
Citation: LIU Guoqiang, FANG Sheng, LI Zheet al. A full-scale feature aggregation network for remote sensing image change detection[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(8): 1464-1470. doi: 10.13700/j.bh.1001-5965.2021.0522(in Chinese)

用于遥感图像变化检测的全尺度特征聚合网络

doi: 10.13700/j.bh.1001-5965.2021.0522
基金项目: 

山东省自然科学基金 ZR2020MF132

详细信息
    通讯作者:

    房胜, E-mail: fangsheng@tsinghua.org.cn

  • 中图分类号: TP751

A full-scale feature aggregation network for remote sensing image change detection

Funds: 

Shandong Provincial Natural Science Foundation ZR2020MF132

More Information
  • 摘要:

    变化检测(CD)是遥感的一项重要任务,通常面临许多伪变化和较大的尺度变化。目前的方法主要侧重于对差异特征的建模,忽略了从原始图像中提取足够的信息,影响了特征的识别能力,难以稳定地区分出变化区域。针对以上问题,提出了一种全尺度特征聚合网络(FFANet)来更充分地利用原始图像特征,促使生成的特征表示在语义上更丰富、在空间上更准确,从而提高了网络对小目标和目标边缘的检测性能。同时,拓展了深监督来结合多尺度的预测图,以促使不同对象在更合适的尺度上进行检测,从而提升了网络对对象尺度变化的鲁棒性。在CDD数据集上,相比于基线网络,所提方法仅增加了1.01×106的参数量,就将F1分数提升了0.034。

     

  • 图 1  FFANet的网络结构

    Figure 1.  Network architecture of FFANet

    图 2  用于全尺度特征融合的编码器

    Figure 2.  Encoders for full-scale feature fusion

    图 3  特征图S3(N)的构建

    Figure 3.  Construction of feature map S3(N)

    图 4  用于生成多尺度差异特征的解码器

    Figure 4.  Decoder for generating multi-scale difference feature

    图 5  多尺度分类器

    Figure 5.  Multi-scale classifier

    图 6  CDD测试集上不同方法的可视化

    Figure 6.  Visualization of different methods on CDD test set

    图 7  普通的编码器

    Figure 7.  Plain encoder

    图 8  编码器和分类器的对比实验

    Figure 8.  Comparison experiments of encoder and classifier

    表  1  CDD和LEVIR数据集上FFANet与其他方法的对比

    Table  1.   Comparison of FFANet with other methods on CDD and LEVIR datasets

    方法 参数量/106 计算量/GFLOPs CDD LEVIR
    P R F1 P R F1
    FC-EF 1.35 7.14 0.749 0.494 0.595 0.754 0.730 0.742
    FC-Siam-conc 1.55 10.64 0.779 0.622 0.692 0.852 0.736 0.790
    FC-Siam-diff 1.35 9.44 0.786 0.588 0.673 0.861 0.687 0.764
    IFN 35.72 164.53 0.950 0.861 0.903 0.903 0.876 0.889
    DASNet 16.25 113.09 0.914 0.925 0.919 0.811 0.788 0.799
    SNUNet 12.03 109.62 0.956 0.949 0.953 0.889 0.874 0.881
    FFANet 8.64 28.81 0.962 0.957 0.960 0.925 0.892 0.908
    注:GFLOPs指109次浮点运算。
    下载: 导出CSV

    表  2  CDD数据集上的消融实验

    Table  2.   Ablation experiments on CDD data set

    序号 编码器 分类器 参数量/106 P R F1
    × × 7.63 0.955 0.900 0.926
    × 8.64 0.960 0.942 0.951
    × 7.63 0.957 0.943 0.950
    8.64 0.962 0.957 0.960
    下载: 导出CSV
  • [1] LEICHTLE T, GEIß C, LAKES T, et al. Class imbalance in unsupervised change detection-A diagnostic analysis from urban remote sensing[J]. International Journal of Applied Earth Observation and Geoinformation, 2017, 60: 83-98. doi: 10.1016/j.jag.2017.04.002
    [2] USEYA J, CHEN S B, MUREFU M. Cropland mapping and change detection: Toward zimbabwean cropland inventory[J]. IEEE Access, 2019, 7: 53603-53620. doi: 10.1109/ACCESS.2019.2912807
    [3] QIAO H J, WAN X, WAN Y C, et al. A novel change detection method for natural disaster detection and segmentation from video sequence[J]. Sensors (Basel), 2020, 20(18): 5076. doi: 10.3390/s20185076
    [4] RONG K, FANG B, CHEN G, et al. Progressive domain adaptation for change detection using season-varying remote sensing images[J]. Remote Sensing, 2020, 12(22): 3815. doi: 10.3390/rs12223815
    [5] VU V T, PETTERSSON M I, MACHADO R, et al. False alarm reduction in wavelength-resolution SAR change detection using adaptive noise canceler[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(1): 591-599. doi: 10.1109/TGRS.2016.2611684
    [6] BOVOLO F, BRUZZONE L. A novel theoretical framework for unsupervised change detection based on CVA in polar domain[C]//2006 IEEE International Symposium on Geoscience and Remote Sensing. Piscataway: IEEE Press, 2006: 379-382.
    [7] DENG J S, WANG K, DENG Y H, et al. PCA-based land-use change detection and analysis using multitemporal and multisensor satellite data[J]. International Journal of Remote Sensing, 2008, 29(15-16): 4823-4838.
    [8] LI W, LU M, CHEN X W. Automatic change detection of urban land-cover based on SVM classification[C]//2015 IEEE International Symposium on Geoscience and Remote Sensing. Piscataway: IEEE Press, 2015: 1686-1689.
    [9] DAUDT R C, SAUX B L, BOULCH A. Fully convolutional Siamese networks for change detection[C]//IEEE International Conference on Image Processing (ICIP). Piscataway: IEEE Press, 2018: 4063-4067.
    [10] ZHANG C Z, PENG Y, TAPETE D, et al. A deeply supervised image fusion network for change detection in high resolution bi-temporal remote sensing images[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 166: 183-200. doi: 10.1016/j.isprsjprs.2020.06.003
    [11] FANG S, LI K Y, SHAO J Y, et al. SNUNet-CD: A densely connected Siamese network for change detection of VHR images[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 19: 1-5.
    [12] ZHOU Z, SIDDIQUEE M, TAJBAKHSH N, et al. UNet++: A nested U-Net architecture for medical image segmentation[C]// Deep Learning in Medical Image Analysis (DLMIA) Workshop, 2018: 3-11.
    [13] CHEN H, SHI Z W. A spatial-temporal attention-based method and a new dataset for remote sensing image change detection[J]. Remote Sensing, 2020, 12(10): 1662. doi: 10.3390/rs12101662
    [14] CHEN J, YUAN Z Y, PENG J, et al. DASNet: Dual attentive fully convolutional siamese networks for change detection of high resolution satellite images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 14: 1194-1206.
    [15] RONNEBERGER O, FISCHER P, BROX T. U-Net: Convolutional networks for biomedical image segmentation[C]//Medical Image Computing and Compwter-Assisted Intervertion-MICCAI 2015, 2015.
    [16] SHELHAMER E, LONG J, DARRELL T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4): 640-651. doi: 10.1109/TPAMI.2016.2572683
    [17] LIN T Y, DOLLAR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2017: 936-944.
    [18] BAO T E, FU C Q, FANG T, et al. PPCNET: A combined patch-level and pixel-level end-to-end deep network for high-resolution remote sensing image change detection[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(10): 1797-1801. doi: 10.1109/LGRS.2019.2955309
    [19] HUAN R, ZHOU M, XING Y, et al. Change detection with various combinations of fluid pyramid integration networks[J]. Neurocomputing, 2021, 437: 84-94. doi: 10.1016/j.neucom.2021.01.030
    [20] YANG K, LIU Z, LU Q, et al. Multi-scale weighted branch network for remote sensing image classification[C]//2010 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2019.
    [21] LEBEDEV M A, VIZILTER Y V, VYGOLOV OLEG, et al. Change detection in remote sensing images using conditional adversarial networks[J]. The International Archives of the photogrammetry, Rewote Sensing and Spatial Information Sciences, 2018, 48(2): 565-571.
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  426
  • HTML全文浏览量:  191
  • PDF下载量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-06
  • 录用日期:  2021-10-01
  • 网络出版日期:  2021-10-29
  • 整期出版日期:  2022-08-20

目录

    /

    返回文章
    返回
    常见问答