Study on Theory and Arithmetic of Stationary Alignment for PINS
-
摘要: 分析了平台式惯导系统(PINS)静基座条件下的可观测性,采用系统可观测矩阵的条件数来定量计算PINS静基座可观测性能,找出该条件下的可观测矩阵条件数最小的3个不可观测变量.采用了自适应Kalman算法和常规Kalman算法对简化模型进行了仿真比较.仿真结果表明前者比后者滤波收敛快.进而提出了一种基于Elman神经网络的快速对准方法.Abstract: The observability of stationary alignment for PINS was analyzed systemically, and condition number of observable matrix was adopted to compute quantificationally the observability of stationary alignment for PINS. Three unobservable states with the least condition mumber were chosen in this condition, then both adaptive Kalman filter and general Kalman filter was employed to compare for simplified model. Simulation results showed the former was faster than later. Furthermore, a alignment method based on Elman neural network was proposed.
-
Key words:
- inertial navigation /
- observability /
- neural networks /
- attitude errors
-
[1] Bar-Itzhack I Y,Bermant N. Control theoretic approach to inertial navigation systems [J].Journal of Guidance Control and Dynamics, 1988,11(3):237~245. [2]Jiang Y F, Lin Y P. Error estimation of INS ground alignment through observability analysis[J]. IEEE Trans on AES,1992,28(1):92~96. [3]万德钧,房建成.惯性导航初始对准[M].南京:东南大学出版社,1998. [4]王丹力,张洪钺.基于RBF网络的惯导初始对准[J]. 航天控制,1999,(2):44~50. [5]袁 信,俞济祥,陈 哲.导航系统[M]. 北京:航空工业出版社,1993. [6]Ham F M, Brown R G. Observervability, eigenvalues and Kalman filtering[J]. IEEE Trans on AES, 1983, 19(2):269~273. [7]王丹力,张洪钺.几种可观性分析方法及在惯导中的应用[J].北京航空航天大学学报,1999, 25(3):342~346. [8]张常云.自适应滤波方法研究[J].航空学报,1998,19(7):96~99.
点击查看大图
计量
- 文章访问数: 2551
- HTML全文浏览量: 192
- PDF下载量: 928
- 被引次数: 0