Prediction of Axial Longitudinal Shear Modulus of Multiphase Fiber Composites
-
摘要: 为混杂纤维复合材料有效轴向模量的计算发展了一个能够考虑纤维截面影响的广义自洽模型:即假定各相纤维的共焦点椭圆柱体细观单元嵌在同一宏观上均匀化的复合材料中.利用解析函数的保角变换与罗朗级数展开,获得了相应问题的封闭解.根据复合材料平均应力与应变关系,获得了预测有效轴向模量的形式简单的代数方程.当各相纤维模量相同时,所得方程退化为已有的预测单相纤维复合材料纵向剪切模量的代数方程.Abstract: A generalized self-consistent model to predict the effective longitudinal shear modulus of multiphase fiber composites was developed, by considering the effect of fiber section shape. In the model, combined confocal elliptical cylinder unit cells are embedded in an infinite homogenization composite. By using conformal mapping technique and Laurent series expansion, a close form solution was obtained. Further a group of algebraic equations to predict effective longitudinal shear modulus of multiphase fiber composites were obtained by virtue of the averaged stress-strain theorem. When the shear moduli of all fibers are same, the above equations can be reduced to those for single phase fiber reinforced composites. The validity of the proposed model was verified by comparing present theoretical predictions with available experimental results.
-
[1]张佐光,张晓宏,仲伟虹,等. 多相混杂纤维复合材料拉伸行为分析 .张志民.第九届全国复合材料学术会议论文集:下册 .北京:世界图书出版公司,1996.410~416. [2]王震鸣,范赋群. 复合材料及其结构力学进展(第二册)[M].广州:华南理工大学出版社,1991. [3]许凤和.高分子材料力学实验[M].北京:科学出版社,1988. [4]Christense R M. Effective properties of composite materials containing voids . Proceedings of the Royal Society of London A440 . 1993.461~473. [5]Jiang C P, Cheung Y K. A fiber/matrix/composite model with a combined confocal elliptical cylinder unit cell for predicting the effective longitudinal shear modulus[J]. Int J Solids Structures,1998,35(30):3977~3987. [6]Whitney J M, Riley M B. Elastic properties of fiber reinforced composite materials[J]. AIAA J,1966,4(9):1537~1542. [7]Huang Y, Hu K X. A generalize self-consistent mechanics method for solids containing elliptical inclusions[J]. ASME Journal of Applied Mechanics,1995,62:566~572, [8]Мусхелишвили著.数学弹性力学的几个基本问题[M]. 赵惠元译.北京:科学出版社,1958.
点击查看大图
计量
- 文章访问数: 2523
- HTML全文浏览量: 15
- PDF下载量: 1042
- 被引次数: 0