留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

融合加速试验及外场使用信息的寿命评估方法

王立志 姜同敏 李晓阳 王晓红

王立志, 姜同敏, 李晓阳, 等 . 融合加速试验及外场使用信息的寿命评估方法[J]. 北京航空航天大学学报, 2013, 39(7): 947-951.
引用本文: 王立志, 姜同敏, 李晓阳, 等 . 融合加速试验及外场使用信息的寿命评估方法[J]. 北京航空航天大学学报, 2013, 39(7): 947-951.
Wang Lizhi, Jiang Tongmin, Li Xiaoyang, et al. Lifetime evaluation method with integrated accelerated testing and field information[J]. Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(7): 947-951. (in Chinese)
Citation: Wang Lizhi, Jiang Tongmin, Li Xiaoyang, et al. Lifetime evaluation method with integrated accelerated testing and field information[J]. Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(7): 947-951. (in Chinese)

融合加速试验及外场使用信息的寿命评估方法

详细信息
  • 中图分类号: TB114.3

Lifetime evaluation method with integrated accelerated testing and field information

  • 摘要: 加速试验技术是开展寿命评估的重要手段,它能够在短时间内得到大量的寿命信息,弥补了外场信息稀缺的问题.然而实验室环境并不能完全代表外场使用环境,它们之间存在一定的差异,其结果也往往不能反应产品的实际情况.针对上述问题,提出一种能够综合加速寿命试验、加速退化试验和外场信息的贝叶斯建模评估方法,利用修正因子对实验室和外场的差异进行修正,利用马尔科夫蒙特卡洛方法进行统计推断,从而得到更为精确的外场可靠寿命及可靠性评估结果.最后通过仿真案例对该方法的实施过程进行了说明及验证,并对其精度和敏感性进行了分析.

     

  • [1] Liao Haitao,Elsayed Elsayed A.Reliability inference for field conditions from accelerated degradation testing[J].Naval Research Logistics (NRL),2006,53(6):576-587
    [2] Meeker William Q,Escobar Luls A,Hong Yili.Using accelerated life tests results to predict product field reliability [J].Technometrics,2009,51(2):146-161
    [3] Pan Rong.A Bayes approach to reliability prediction utilizing data from accelerated life tests and field failure observations[J].Quality and Reliability Engineering International,2009,25(2):229-240
    [4] Hamada M,Martz H F,Reese C S,et al.A fully Bayesian approach for combining multilevel failure information in fault tree quantification and optimal follow-on resource allocation[J].Reliability Engineering & System Safety,2004,86:297-305
    [5] Graves T L,Hamada M S,Klamann R,et al.A fully Bayesian approach for combining multi-level information in multi-state fault tree quantification[J].Reliability Engineering & System Safety,2007,92:1476-1483
    [6] Graves T L,Hamada M S,Klamann R,et al.Using simultaneous higher-level and partial lower-level data in reliability assessments[J].Reliability Engineering & System Safety,2008,93:1273-1279
    [7] Anduin E Touw.Bayesian estimation of mixed Weibull distributions[J].Reliability Engineering & System Safety,2009,94:463-473
    [8] Chhikara R S,Folks J L.The inverse Gaussian distribution as a lifetime model[J].Technometrics,1977,19(4):461-468
    [9] Whitmore G A,Schenkelberg F.Modelling accelerated degradation data using Wiener diffusion with a time scale transformation[J].Lifetime Data Analysis,1997,3(1):27-45
    [10] Lu J.Degradation processes and related reliability models .Montreal:McGill University,1995
    [11] Ioannis Ntzoufras.Bayesian modeling using WinBUGS[M].New York:John Wiely and Sons,2009;275-279
    [12] Gelman A,Rubin D B.Inference from iterative simulation using multiple sequences[J].Statistical Science,1992,7:457-472
  • 加载中
计量
  • 文章访问数:  1372
  • HTML全文浏览量:  139
  • PDF下载量:  607
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-07-23
  • 网络出版日期:  2013-07-30

目录

    /

    返回文章
    返回
    常见问答