留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于支持向量机的滚动轴承状态寿命评估

洪杰 韩磊 苗学问 马艳红

洪杰, 韩磊, 苗学问, 等 . 基于支持向量机的滚动轴承状态寿命评估[J]. 北京航空航天大学学报, 2010, 36(8): 896-899.
引用本文: 洪杰, 韩磊, 苗学问, 等 . 基于支持向量机的滚动轴承状态寿命评估[J]. 北京航空航天大学学报, 2010, 36(8): 896-899.
Hong Jie, Han Lei, Miao Xuewen, et al. Assessment based on support vector machine for rolling bearing grade-life[J]. Journal of Beijing University of Aeronautics and Astronautics, 2010, 36(8): 896-899. (in Chinese)
Citation: Hong Jie, Han Lei, Miao Xuewen, et al. Assessment based on support vector machine for rolling bearing grade-life[J]. Journal of Beijing University of Aeronautics and Astronautics, 2010, 36(8): 896-899. (in Chinese)

基于支持向量机的滚动轴承状态寿命评估

基金项目: 航空科学基金资助项目(2007ZB51021)
详细信息
  • 中图分类号: TB 114

Assessment based on support vector machine for rolling bearing grade-life

  • 摘要: 应用状态寿命描述滚动轴承的使用寿命,并建立了滚动轴承的状态寿命评估模型.状态寿命评估模型建模的关键是振动信号的特征提取和状态的识别算法.针对滚动轴承振动的特点,提取小波包重构信号的频带能量构造特征向量,利用支持向量机作为辨识算法建立滚动轴承状态寿命评估模型.滚动轴承全寿命试验验证了模型的有效性和可信性.

     

  • [1] Williams T,Ribadeneira X,Billingto S.Rolling element bearing diagnostics in run-to-failure life time testing [J].Mechanical Systems and Signal Processing,2001,15(5):979-993 [2] Lawley M,Liu R,Parmeshwaran V.Residual life predictions from vibration-based degradation signals:a neural network aproach[J].IEEE Transactions on Industrial Electronics,2004,51(3):694-699 [3] Orsagh Rolf ,Roemer M,Sheldon J.A comprehensive prognostic approach for predicting gas turbine engine bearing life //Proceedings of ASME Turbo Expo. :ASME,2004 [4] Roemer M J,Byington C S.Prognostics and health management software for gas turbine engine bearings //Proceedings of GT2007 ASME Turbo Expo,Montreal.Canada: ,2007:14-17 [5] Shao Y,Nezu K.Prognosis of remaining bearing life using neural networks[J]. Journal of Systems and Control Engineering,2000,214(3):217-231 [6]  Huang Runqing,Xia Lifeng,Li Xinglin,et al.Residual life predictions for ball bearings based on self-organizing map and back propagation neural network methods[J].Mechanical Systems and Signal Processing ,2007 (21) :193-207 [7] Qiu Hai,Jay Lee,Lin Jing,et al.Robust performance de-gradation assessment methods for enhanced rolling element bearing prognostics[J].Advanced Engineering Informatics,2003 (17):127-140 [8] 尉询楷,李应红,王硕.基于支持向量机的航空发动机滑油监控分析[J].航空动力学报,2004,19(3):392-397 Wei Xunkai,Li Yinghong,Wang Shuo.Aero-engine lubricati-on monitoring analysis via support vector machines[J].Journal of Aerospace Power,2004,19(3):392-397(in Chinese) [9] Vapnic V.The Nature of statistical learning [M].New York:S-pringer,1998 [10] Weston J,Watkins C.Support vector machines for multi-class pattern recognition .UK:Department of Computer Science Royal Holloway,University of London Egham,1999:219-224 [11] Poyhonen S,Negrea M,Arkkio A,et al.Fault diagnostics of an electrical machine with multiple support vector classifiers //Proc of 2002 I-EEE International Symposium on Intelligent Control.Canada: ,2002:373-378 [12] 洪杰,苗学问,马艳红.航空发动机主轴承使用状态寿命预测模型[J].航空发动机,2008,34(3):18-21 Hong Jie,Miao Xuewen,Ma Yanhong.Life prediction modelof operating state for aero-engine main bearing[J].Aeroengine,2008,34(3):18-21(in Chinese) [13] 陈逢时.小波变换理论及其在信号处理中的应用[M].北京:国防工业出版社,1999 Chen Fengshi.Wavelet transform in signal processing theory and applications[M].Beijing:National Defence Industry Press,1999(in Chinese)
  • 加载中
计量
  • 文章访问数:  3793
  • HTML全文浏览量:  240
  • PDF下载量:  1148
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-06-29
  • 网络出版日期:  2010-08-30

目录

    /

    返回文章
    返回
    常见问答