留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于源项辨识的飞机座舱污染浓度动态预测

庞丽萍 曲洪权

庞丽萍, 曲洪权. 基于源项辨识的飞机座舱污染浓度动态预测[J]. 北京航空航天大学学报, 2009, 35(8): 946-949.
引用本文: 庞丽萍, 曲洪权. 基于源项辨识的飞机座舱污染浓度动态预测[J]. 北京航空航天大学学报, 2009, 35(8): 946-949.
Pang Liping, Qu Hongquan. Contaminant concentrations dynamic prediction method for aircraft cabin based on estimating emission rates[J]. Journal of Beijing University of Aeronautics and Astronautics, 2009, 35(8): 946-949. (in Chinese)
Citation: Pang Liping, Qu Hongquan. Contaminant concentrations dynamic prediction method for aircraft cabin based on estimating emission rates[J]. Journal of Beijing University of Aeronautics and Astronautics, 2009, 35(8): 946-949. (in Chinese)

基于源项辨识的飞机座舱污染浓度动态预测

基金项目: 国家自然科学基金资助项目(50808007);"凡舟"青年科研基金资助项目(20080504)
详细信息
    作者简介:

    庞丽萍(1973-),女,黑龙江海林人,副教授,pangliping@buaa.edu.cn.

  • 中图分类号: V 851

Contaminant concentrations dynamic prediction method for aircraft cabin based on estimating emission rates

  • 摘要: 随着大型民机飞行时间的延长,座舱空气污染事故发生概率也随之增大,快速准确的污染浓度预测对保证乘客生命安全具有重要意义.座舱各污染浓度的动态预测和污染源项强度辨识是实现座舱空气质量实时预测的关键技术.污染源项散发强度辨识,如采用最小二乘算法,参数估计是静态的,一般延迟较大;如采用单模卡尔曼滤波算法,虽能实现动态辨识,但不能同时兼顾稳态和过渡过程(突发污染)的参数估计性能,导致误差较大.为解决上述难题,本文提出基于源项辨识的飞机座舱污染浓度动态预测方法,同时完成污染源散发强度动态辨识和污染浓度状态实时预测.该算法由2个滤波器组成,分别用于匹配系统的稳态和突发过渡过程特征,提高浓度方程参数估计和状态预测性能,保证飞机座舱空气质量态势预测的快速性和准确性.仿真结果证实了该算法的有效性.

     

  • [1] Fang L, Wyon D P, Fanger P O. Sick building syndrome symptoms caused by low humidity Proceedings of Healthy Buildings. Singapore, 2003:1-6 [2] Sun Yuexia, Fang Le, Wyon P, et al. Experimental research on photocatalytic oxidation air purification technology applied to aircraft cabins [J]. Building and Environment,2008,43(3):258-268 [3] Committee on Air Quality in Passenger Cabins of Commercial Aircraft. The airliner cabin environment and the health of passengers and crew [M]. Washington DC: National Academy Press, 2002 [4] Dechow M, Sohn H, Steinhanses J. Concentrations of selected contaminants in cabin air of Airbus aircrafts [J]. Chemosphere, 1997,35: 21-31 [5] Loo S M, Owens J. ASCENT: airliner sensor and cabin environment network Hamid R. International Conference on Wireless Networks, 2006:441-447 [6] Persily A,Reed C H, Nabinger S J. Transient analysis of volatile organic compound concentrations for estimating emission rates [J]. Atmospheric Environment,2003,37:5505-5516 [7] Chen Yongcheng, Zhang Yuanhui, Ernest M B. A dynamic method to estimate indoor dust sink and source [J]. Building and Environment,2000,35:215-221 [8] Liu Xiang, Zhai Zhiqiang. Probability-based inverse modeling algorithm for indoor pollutant source tracking Yang Xudong. Building Simulation. Beijing:Tsinghua Press and Springer-Verlag,2007:810-818 [9] Ristic B, Arulampalam S, Gordon N. Beyond the Kalman filter-particle filter for tracking application[M].Artech House, 2004:39 [10] Hocking M B. Passenger aircraft cabin air quality: trends, effects, societal costs, proposals [J]. Chemosphere,2000,41:603-615
  • 加载中
计量
  • 文章访问数:  4063
  • HTML全文浏览量:  23
  • PDF下载量:  818
  • 被引次数: 0
出版历程
  • 收稿日期:  2008-07-11
  • 网络出版日期:  2009-08-31

目录

    /

    返回文章
    返回
    常见问答