Citation: | ZHOU Zexin, SUN Zhiqiang, XU Bing, et al. Modularization design of vacuum thermal test frock for space optical remote sensor[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(8): 1544-1551. doi: 10.13700/j.bh.1001-5965.2018.0679(in Chinese) |
To solve the problem of uneven temperature distribution in the ground simulation experiment of space environment by space optical remote sensor, the modular design is used to optimize the cabin plate structure frock of a certain space optical remote sensor, and the cabin plates are divided according to the temperature distribution. In this paper, modular assembly and modular thermal control are proposed. The modular assembly is to divide the cabin plates and its surface heating sheets independently; the modular thermal control considers the cabin plates as a whole, and only the heating sheets are divided. The results show that the average temperature deviation of the modular thermal control is 0.205 K, which is lower than 0.87 K of the unmodulated design and 0.30 K of the modular assembly, and improves the temperature uniformity of the cabin plates. Modular assembly improves the temperature distribution of the cabin plates, and the proportion of measuring points that meet the thermal control requirements is increased from 34.8% to 96.7%. However, there is still a certain temperature difference between the modules, and modular thermal control eliminates the temperature difference. The proportion of measuring points meeting the thermal control requirements is further increased to 100%, which fully meets the thermal control requirements.
[1] |
麻慧涛, 钟奇, 范含林, 等.微型卫星热控制技术研究[J].航天器工程, 2006, 15(2):6-13. http://www.cnki.com.cn/Article/CJFDTOTAL-HTGC200602001.htm
MA H T, ZHONG Q, FAN H L, et al.Investigation of the thermal control technology for micro-satellite[J]. Spacecraft Engineering, 2006, 15(2):6-13(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-HTGC200602001.htm
|
[2] |
李春林.空间光学遥感器热控技术研究[J].宇航学报, 2014, 35(8):863-870. doi: 10.3873/j.issn.1000-1328.2014.08.001
LI C L.Research on space optical remote sensor thermal control technique[J]. Journal of Astronautics, 2014, 35(8):863-870(in Chinese). doi: 10.3873/j.issn.1000-1328.2014.08.001
|
[3] |
齐彧, 孙俊, 师鹏, 等.航天器相对运动地面动力学实验研究[J].北京航空航天大学学报, 2016, 42(10):2118-2129. https://bhxb.buaa.edu.cn/CN/abstract/abstract13622.shtml
QI Y, SUN J, SHI P, et al.Research for ground-based astrodynamical experiment for spacecraft relative motion[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(10):2118-2129(in Chinese). https://bhxb.buaa.edu.cn/CN/abstract/abstract13622.shtml
|
[4] |
李延伟, 张洪文, 程志峰, 等.隔热材料在高空光学遥感器热控系统中的应用[J].仪器仪表学报, 2013, 34(12):44-47. http://www.cnki.com.cn/Article/CJFDTOTAL-YQXB2013S1009.htm
LI Y W, ZHANG H W, CHENG Z F, et al.Application of insulation material in thermal control system of altitude optical sensor[J]. Chinese Journal of Scientific Instrument, 2013, 34(12):44-47(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-YQXB2013S1009.htm
|
[5] |
王领华, 吴清文, 郭亮, 等.高分辨率可见光航空相机的热设计及热分析[J].红外与激光工程, 2012, 41(5):1236-1243. doi: 10.3969/j.issn.1007-2276.2012.05.022
WANG L H, WU Q W, GUO L, et al.Thermal design and analysis for the high resolution visible light aeronautic camera[J]. Infrared and Laser Engineering, 2012, 41(5):1236-1243(in Chinese). doi: 10.3969/j.issn.1007-2276.2012.05.022
|
[6] |
吴雪峰, 丁亚林, 吴清文.临近空间光学遥感器热设计[J].光学精密工程, 2010, 18(5):1159-1165. http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201005020
WU X F, DING Y L, WU Q W.Thermal design for near space optical remote sensor[J]. Optics and Precision Engineering, 2010, 18(5):1159-1165(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201005020
|
[7] |
程雪涛, 梁新刚.辐射[火积]耗散与空间辐射器温度场均匀化的关系[J].工程热物理学报, 2012, 33(2):311-314. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcrwlxb201202035
CHENG X T, LIANG X G.Relationship between entransy dissipation of thermal radiation and homogeniantion of temperature field for thermal radiator in space[J]. Journal of Engineering Thermophysics, 2012, 33(2):311-314(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcrwlxb201202035
|
[8] |
杨献伟, 吴清文, 李书胜, 等.空间光学遥感器热设[J].中国光学, 2011, 4(2):139-146. doi: 10.3969/j.issn.2095-1531.2011.02.007
YANG X W, WU Q W, LI S S, et al.Thermal design of space optical remote sensor[J]. Chinese Optics, 2011, 4(2):139-146(in Chinese). doi: 10.3969/j.issn.2095-1531.2011.02.007
|
[9] |
关奉伟, 刘巨, 于善猛, 等.空间光学遥感器热试验外热流模拟及程控实现[J].中国光学, 2014, 7(6):982-988. http://d.old.wanfangdata.com.cn/Periodical/zggxyyygxwz201406015
GUAN F W, LIU J, YU S M, et al.Space heat flux simulation and programmable load for thermal test of space optical remote sensor[J]. Chinese Optics, 2014, 7(6):982-988(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/zggxyyygxwz201406015
|
[10] |
BATURKIN V, ZHUK S, VOJTA J, et al.Elaboration of thermal control systems on heat pipes for microsatellites magions 4, 5 and BIRD[J]. Applied Thermal Engineering, 2003, 23(9):1109-1117. doi: 10.1016/S1359-4311(03)00040-1
|
[11] |
胡帼杰, 刘百麟, 裴胜伟, 等.基于热管网络的近地圆轨道通信卫星热控技术[J].工程热物理学报, 2017, 38(6):1338-1343. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcrwlxb201706033
HU G J, LIU B L, PEI S W, et al.Thermal control technology for LEO commutation satellite platform based on 3D heat pipe network[J]. Journal of Engineering Thermophysics, 2017, 38(6):1338-1343(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcrwlxb201706033
|
[12] |
闫华锋, 仲伟俊.复杂产品系统模块化分解模型及应用研究[J].北京航空航天大学学报, 2017, 43(4):654-659. https://bhxb.buaa.edu.cn/CN/abstract/abstract13951.shtml
YAN H F, ZHONG W J.Modular decomposition model of complex product system and its application[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(4):654-659(in Chinese). https://bhxb.buaa.edu.cn/CN/abstract/abstract13951.shtml
|
[13] |
徐小明, 张武翔, 丁希仑.基于模块化的缠绕机设计方法[J].北京航空航天大学学报, 2018, 44(4):746-758. https://bhxb.buaa.edu.cn/CN/abstract/abstract14374.shtml
XU X M, ZHANG W X, DING X L.Modular design method for filament winding machine[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(4):746-758(in Chinese). https://bhxb.buaa.edu.cn/CN/abstract/abstract14374.shtml
|
[14] |
刘建功, 王晓帆, 刘扬, 等.环形构型的模块化机器人系统动态运动规划[J].机械设计与制造, 2018(9):61-67. doi: 10.3969/j.issn.1001-3997.2018.09.017
LIU J G, WANG X F, LIU Y, et al.Research on dynamic motion planning of modular robot system with annular configuration[J]. Machinery Design & Manufacture, 2018(9):61-67(in Chinese). doi: 10.3969/j.issn.1001-3997.2018.09.017
|
[15] |
胡毅, 黄炜, 胡鹏浩, 等.自驱动关节臂坐标测量机模块化关节设计[J].光学精密工程, 2018, 25(6):2021-2029. http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201808023
HU Y, HUANG W, HU P H, et al.Design of modular articulation in self-driven AACMM[J]. Optics and Precision Engineering, 2018, 25(6):2021-2029(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201808023
|
[16] |
YIN L, HE M L, XIE W B, et al.A quantitative model of universalization, serialization and modularization on equipment systems[J]. Physica A:Statistical Mechanics and Its Applications, 2018, 508:359-366. doi: 10.1016/j.physa.2018.05.120
|
[17] |
PANKAJ C P, VINIT P, JAYANTH J, et al.Task equivocality and process modularity in R&D offshore collaboration projects[J]. Journal of Business Research, 2018, 93(C):12-22. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=46975cdd50efb00e40f0a81e5732cbf8
|
[18] |
刘亮堂, 王安良.星载电子器件用空气射流散热特[J].北京航空航天大学学报, 2015, 41(8):1553-1559. https://bhxb.buaa.edu.cn/CN/abstract/abstract13370.shtml
LIU L T, WANG A L.Characteristic of air jet impingement cooling performance for electronic equipment of satellite[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(8):1553-1559(in Chinese). https://bhxb.buaa.edu.cn/CN/abstract/abstract13370.shtml
|
[19] |
郭磊.对FLUENT辐射模型的数值计算与分析[J].制冷与空调, 2014, 28(3):358-360. doi: 10.3969/j.issn.1671-6612.2014.03.022
GUO L.Numerical calculation and analysis of the FLUENT radiation model[J]. Refrigeration and Air Conditioning, 2014, 28(3):358-360(in Chinese). doi: 10.3969/j.issn.1671-6612.2014.03.022
|
[20] |
字贵才, 贺卫亮.临近空间环境下封闭方腔内耦合换热特性[J].北京航空航天大学学报, 2018, 44(6):1283-1293. https://bhxb.buaa.edu.cn/CN/abstract/abstract14512.shtml
ZI G C, HE W L.Conjugate heat transfer characteristics of enclosure cavity in near space environment[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(6):1283-1293(in Chinese). https://bhxb.buaa.edu.cn/CN/abstract/abstract14512.shtml
|
[21] |
白心爱.辐射换热角系数的计算[J].红外, 2008, 29(8):30-33. doi: 10.3969/j.issn.1672-8785.2008.08.007
BAI X A.Calculation of radiation heat transfer angle coefficient[J]. Infrared, 2008, 29(8):30-33(in Chinese). doi: 10.3969/j.issn.1672-8785.2008.08.007
|
[22] |
刘大龙, 赵辉辉.建筑围合空间内辐射角系数的简化计算[J].工程热物理学报, 2018, 39(5):1118-1124. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcrwlxb201805029
LIU D L, ZHAO H H.Simplified calculation of configuration factor in enclosed building space[J]. Journal of Engineering Thermophysics, 2018, 39(5):1118-1124(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcrwlxb201805029
|