Citation: | ZHU Min, XU Aiqiang, CHEN Qiangqiang, et al. An improved KELM based online condition prediction method[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(7): 1370-1379. doi: 10.13700/j.bh.1001-5965.2018.0685(in Chinese) |
In order to curb kernel matrix expansion and track the time-varying dynamic characteristics when kernel extreme learning machine (KELM) is applied to online condition prediction, a sparse KELM online prediction algorithm with forgetting factor is proposed. By introducing forgetting factor, a new objective function is constructed, which makes every element in sparse dictionary has different weights related to timestamp and ensures the effective tracking of the dynamic changes. By minimizing the fast leave-one-out cross-validation (FLOO-CV) error, key nodes with predetermined size are selected to form a dictionary. At the same time, the online recursive updating of model parameters is realized based on the elementary transformation of matrix and the inverse formula of block matrix. The proposed algorithm is compared with the recently proposed three online sequential KELM algorithms. The experimental results of aero-engine condition prediction show that the average training time of the proposed algorithm on six monitoring items is reduced by 7.5%, 62.0% and 81.9% respectively, and the average prediction accuracy is improved by 44.0%, 19.9% and 50.9% respectively.
[1] |
TIAN Z, QIAN C, GU B, et al.Electric vehicle air conditioning system performance prediction based on artificial neural network[J].Applied Thermal Engineering, 2015, 89:101-104. doi: 10.1016/j.applthermaleng.2015.06.002
|
[2] |
HUANG G B, ZHU Q Y, SIEW C K.Extreme learning machine:Theory and application[J].Neurocomputing, 2006, 70(1-3):489-501. doi: 10.1016/j.neucom.2005.12.126
|
[3] |
YIN G, ZHANG Y T, LI Z N, et al.Online fault diagnosis method based on incremental support vector data description and extreme learning machine with incremental output structure[J].Neurocomputing, 2014, 128:224-231. doi: 10.1016/j.neucom.2013.01.061
|
[4] |
BILAL M, LIN Z P, LIU N.Ensemble of subset online sequential extreme learning machine for class imbalance and concept drift[J].Neurocomputing, 2015, 149:316-329. doi: 10.1016/j.neucom.2014.03.075
|
[5] |
LIANG N Y, HUANG G B, SARATCHANDRAN P, et al.A fast and accurate online sequential learning algorithm for feedforward networks[J].IEEE Transactions on Neural Networks, 2006, 17(6):1411-1423. doi: 10.1109/TNN.2006.880583
|
[6] |
HUANG G B, ZHOU H, DING X, et al.Extreme learning machine for regression and multiclass classification[J].IEEE Transactions on Systems, Man, and Cybernetics-Part B:Cybernetics, 2011, 42(2):513-529. http://cn.bing.com/academic/profile?id=3c625b13139614a7a9cad9abcf0e148b&encoded=0&v=paper_preview&mkt=zh-cn
|
[7] |
SCARDAPANE S, COMMINIELLO D, SCARPINITI M, et al.Online sequential extreme learning machine with kernels[J].IEEE Transactions on Neural Networks and Learning Systems, 2015, 26(9):2214-2220. doi: 10.1109/TNNLS.2014.2382094
|
[8] |
GUO L, HAO J H, LIU M.An incremental extreme learning machine for online sequential learning problems[J].Neurocomputing, 2014, 128:50-58. doi: 10.1016/j.neucom.2013.03.055
|
[9] |
YU X, RASHID M, FENG J, et al.Online glucose prediction using computationally efficient sparse kernel filtering algorithms in type-1 diabetes[J].IEEE Transactions on Control Systems Technology, 2018, 99:1-13. http://cn.bing.com/academic/profile?id=6f9d6f4ef847e5cf224f71777527e2c7&encoded=0&v=paper_preview&mkt=zh-cn
|
[10] |
HAN M, ZHANG S, XU M, et al.Multivariate chaotic time series online prediction based on improved kernel recursive least squares algorithm[J].IEEE Transactions on Cybernetics, 2018, 49(4):1160-1172. http://cn.bing.com/academic/profile?id=e211614187c890abde07fab207026de0&encoded=0&v=paper_preview&mkt=zh-cn
|
[11] |
HONEINE P.Analyzing sparse dictionaries for online learning with kernels[J].IEEE Transactions on Signal Processing, 2015, 63(23):6343-6353. doi: 10.1109/TSP.2015.2457396
|
[12] |
ZHOU X R, LIU Z J, ZHU C X.Online regularized and kernelized extreme learning machines with forgetting mechanism[J].Mathematical Problems in Engineering, 2014, 2014:1-11. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0621dbc6f0bfa7cab6e5ee747bcb5d83
|
[13] |
ZHOU X R, WANG C S.Cholesky factorization based online regularized and kernelized extreme learning machines with forgetting mechanism[J].Neurocomputing, 2016, 174:1147- 1155. doi: 10.1016/j.neucom.2015.10.033
|
[14] |
RICHARD C, BERMUDEZ J C M, HONEINE P.Online prediction of time series data with kernels[J].IEEE Transactions on Signal Processing, 2009, 57(3):1058-1067. doi: 10.1109/TSP.2008.2009895
|
[15] |
张伟, 许爱强, 高明哲.基于稀疏核增量超限学习机的机载设备在线状态预测[J].北京航空航天大学学报, 2017, 43(10):2089-2098. http://www.cqvip.com/QK/90750X/201710/673737256.html
ZHANG W, XU A Q, GAO M Z.Online condition prediction of avionic devices based on sparse kernel incremental extreme learning machine[J].Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(10):2089-2098(in Chinese). http://www.cqvip.com/QK/90750X/201710/673737256.html
|
[16] |
张伟, 许爱强, 高明哲.一种基于积累一致性测量的在线状态预测算法[J].上海交通大学学报, 2017, 51(11):1391-1398. http://d.old.wanfangdata.com.cn/Periodical/shjtdxxb201711016
ZHANG W, XU A Q, GAO M Z.An online condition prediction algorithm based on cumulative coherence measurement[J].Journal of Shanghai Jiaotong University, 2017, 51(11):1391-1398(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/shjtdxxb201711016
|
[17] |
ZHANG W, XU A Q, PING D F, et al.An improved kernel-based incremental extreme learning machine with fixed budget for nonstationary time series prediction[J].Neural Computing & Applications, 2019, 31(3):637-652. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ab5cb05588d91facb1cde1abec547d0f
|
[18] |
LIM J S, LEE S, PANG H S, et al.Low complexity adaptive forgetting factor for online sequential extreme learning machine (OS-ELM) for application to nonstationary system estimations[J].Neural Computing & Applications, 2013, 22(3-4):569- 576. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3f9ad96fbcac7e97fb7c8d6338a519e2
|
[19] |
郭威, 徐涛, 于建江, 等.基于M-estimator与可变遗忘因子的在线贯序超限学习机[J].电子与信息学报, 2018, 40(6):94-101. http://d.old.wanfangdata.com.cn/Periodical/dzkxxk201806013
GUO W, XU T, YU J J, et al.Online sequential extreme learning machine based on m-estimator and variable forgetting factor[J].Journal of Electronics & Information Technology, 2018, 40(6):94-101(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/dzkxxk201806013
|
[20] |
张英堂, 马超, 李志宁, 等.基于快速留一交叉验证的核极限学习机在线建模[J].上海交通大学学报, 2014, 48(5):641-646. http://d.old.wanfangdata.com.cn/Periodical/shjtdxxb201405011
ZHANG Y T, MA C, LI Z N, et al.Online modeling of kernel extreme learning machine based on fast leave-one-out cross-validation[J].Journal of Shanghai Jiaotong University, 2014, 48(5):641-646(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/shjtdxxb201405011
|
[21] |
HUYNH H T, WON Y.Regularized online sequential learning algorithm for single-hidden layer feedforward neural networks[J].Pattern Recognition Letters, 2011, 32(14):1930-1935. doi: 10.1016/j.patrec.2011.07.016
|