Song Zhaoqing, Mao Jianqin. First-order D-type iterative learning control for a class of nonlinear systems[J]. Journal of Beijing University of Aeronautics and Astronautics, 2005, 31(11): 1212-1216. (in Chinese)
Citation: ZHU Min, XU Aiqiang, CHEN Qiangqiang, et al. An improved KELM based online condition prediction method[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(7): 1370-1379. doi: 10.13700/j.bh.1001-5965.2018.0685(in Chinese)

An improved KELM based online condition prediction method

doi: 10.13700/j.bh.1001-5965.2018.0685
Funds:

National Natural Science Foundation of China 11802338

Natural Science Foundation of Shandong Province ZR2017MF036

More Information
  • Corresponding author: XU Aiqiang, E-mail: hjhyautotest@sina.com
  • Received Date: 22 Nov 2018
  • Accepted Date: 28 Dec 2018
  • Publish Date: 20 Jul 2019
  • In order to curb kernel matrix expansion and track the time-varying dynamic characteristics when kernel extreme learning machine (KELM) is applied to online condition prediction, a sparse KELM online prediction algorithm with forgetting factor is proposed. By introducing forgetting factor, a new objective function is constructed, which makes every element in sparse dictionary has different weights related to timestamp and ensures the effective tracking of the dynamic changes. By minimizing the fast leave-one-out cross-validation (FLOO-CV) error, key nodes with predetermined size are selected to form a dictionary. At the same time, the online recursive updating of model parameters is realized based on the elementary transformation of matrix and the inverse formula of block matrix. The proposed algorithm is compared with the recently proposed three online sequential KELM algorithms. The experimental results of aero-engine condition prediction show that the average training time of the proposed algorithm on six monitoring items is reduced by 7.5%, 62.0% and 81.9% respectively, and the average prediction accuracy is improved by 44.0%, 19.9% and 50.9% respectively.

     

  • [1]
    TIAN Z, QIAN C, GU B, et al.Electric vehicle air conditioning system performance prediction based on artificial neural network[J].Applied Thermal Engineering, 2015, 89:101-104. doi: 10.1016/j.applthermaleng.2015.06.002
    [2]
    HUANG G B, ZHU Q Y, SIEW C K.Extreme learning machine:Theory and application[J].Neurocomputing, 2006, 70(1-3):489-501. doi: 10.1016/j.neucom.2005.12.126
    [3]
    YIN G, ZHANG Y T, LI Z N, et al.Online fault diagnosis method based on incremental support vector data description and extreme learning machine with incremental output structure[J].Neurocomputing, 2014, 128:224-231. doi: 10.1016/j.neucom.2013.01.061
    [4]
    BILAL M, LIN Z P, LIU N.Ensemble of subset online sequential extreme learning machine for class imbalance and concept drift[J].Neurocomputing, 2015, 149:316-329. doi: 10.1016/j.neucom.2014.03.075
    [5]
    LIANG N Y, HUANG G B, SARATCHANDRAN P, et al.A fast and accurate online sequential learning algorithm for feedforward networks[J].IEEE Transactions on Neural Networks, 2006, 17(6):1411-1423. doi: 10.1109/TNN.2006.880583
    [6]
    HUANG G B, ZHOU H, DING X, et al.Extreme learning machine for regression and multiclass classification[J].IEEE Transactions on Systems, Man, and Cybernetics-Part B:Cybernetics, 2011, 42(2):513-529.
    [7]
    SCARDAPANE S, COMMINIELLO D, SCARPINITI M, et al.Online sequential extreme learning machine with kernels[J].IEEE Transactions on Neural Networks and Learning Systems, 2015, 26(9):2214-2220. doi: 10.1109/TNNLS.2014.2382094
    [8]
    GUO L, HAO J H, LIU M.An incremental extreme learning machine for online sequential learning problems[J].Neurocomputing, 2014, 128:50-58. doi: 10.1016/j.neucom.2013.03.055
    [9]
    YU X, RASHID M, FENG J, et al.Online glucose prediction using computationally efficient sparse kernel filtering algorithms in type-1 diabetes[J].IEEE Transactions on Control Systems Technology, 2018, 99:1-13.
    [10]
    HAN M, ZHANG S, XU M, et al.Multivariate chaotic time series online prediction based on improved kernel recursive least squares algorithm[J].IEEE Transactions on Cybernetics, 2018, 49(4):1160-1172.
    [11]
    HONEINE P.Analyzing sparse dictionaries for online learning with kernels[J].IEEE Transactions on Signal Processing, 2015, 63(23):6343-6353. doi: 10.1109/TSP.2015.2457396
    [12]
    ZHOU X R, LIU Z J, ZHU C X.Online regularized and kernelized extreme learning machines with forgetting mechanism[J].Mathematical Problems in Engineering, 2014, 2014:1-11.
    [13]
    ZHOU X R, WANG C S.Cholesky factorization based online regularized and kernelized extreme learning machines with forgetting mechanism[J].Neurocomputing, 2016, 174:1147- 1155. doi: 10.1016/j.neucom.2015.10.033
    [14]
    RICHARD C, BERMUDEZ J C M, HONEINE P.Online prediction of time series data with kernels[J].IEEE Transactions on Signal Processing, 2009, 57(3):1058-1067. doi: 10.1109/TSP.2008.2009895
    [15]
    张伟, 许爱强, 高明哲.基于稀疏核增量超限学习机的机载设备在线状态预测[J].北京航空航天大学学报, 2017, 43(10):2089-2098.

    ZHANG W, XU A Q, GAO M Z.Online condition prediction of avionic devices based on sparse kernel incremental extreme learning machine[J].Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(10):2089-2098(in Chinese).
    [16]
    张伟, 许爱强, 高明哲.一种基于积累一致性测量的在线状态预测算法[J].上海交通大学学报, 2017, 51(11):1391-1398.

    ZHANG W, XU A Q, GAO M Z.An online condition prediction algorithm based on cumulative coherence measurement[J].Journal of Shanghai Jiaotong University, 2017, 51(11):1391-1398(in Chinese).
    [17]
    ZHANG W, XU A Q, PING D F, et al.An improved kernel-based incremental extreme learning machine with fixed budget for nonstationary time series prediction[J].Neural Computing & Applications, 2019, 31(3):637-652.
    [18]
    LIM J S, LEE S, PANG H S, et al.Low complexity adaptive forgetting factor for online sequential extreme learning machine (OS-ELM) for application to nonstationary system estimations[J].Neural Computing & Applications, 2013, 22(3-4):569- 576.
    [19]
    郭威, 徐涛, 于建江, 等.基于M-estimator与可变遗忘因子的在线贯序超限学习机[J].电子与信息学报, 2018, 40(6):94-101.

    GUO W, XU T, YU J J, et al.Online sequential extreme learning machine based on m-estimator and variable forgetting factor[J].Journal of Electronics & Information Technology, 2018, 40(6):94-101(in Chinese).
    [20]
    张英堂, 马超, 李志宁, 等.基于快速留一交叉验证的核极限学习机在线建模[J].上海交通大学学报, 2014, 48(5):641-646.

    ZHANG Y T, MA C, LI Z N, et al.Online modeling of kernel extreme learning machine based on fast leave-one-out cross-validation[J].Journal of Shanghai Jiaotong University, 2014, 48(5):641-646(in Chinese).
    [21]
    HUYNH H T, WON Y.Regularized online sequential learning algorithm for single-hidden layer feedforward neural networks[J].Pattern Recognition Letters, 2011, 32(14):1930-1935. doi: 10.1016/j.patrec.2011.07.016
  • Relative Articles

    [1]HUANG Shouqing, XIA Qiaoli, XU Shu, YU Yifang, LIU Shouwen, ZHANG Zhaolin. On-orbit life re-evaluation technology and prospects for electromechanical products in response to demand for China Space Station lifespan extension[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0799
    [2]DENG H W,HOU Y J,ZHANG C Y,et al. Mental fatigue recognition algorithm based on cascade forest and multi-modal fusion[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(2):584-593 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0030.
    [3]XU C,XIAO Y,DENG P C. Fatigue life prediction of CFRP flat-joggle-flat bonded joint[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(2):518-524 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0048.
    [4]ZHANG Q S,LI D Q,LIAN X X. Study of corrosion and hydrogen evolution risk of waded lithium ion-battery[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(7):2083-2092 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0617.
    [5]ZHAO H L,BAI L D. Remaining life prediction of engine by improved similarity with interval partition[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(10):3005-3012 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0762.
    [6]YU Y B,HE Z Q,HE X F,et al. Rotating bending fatigue life prediction of bearing steel based on damage mechanics[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2585-2594 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0639.
    [7]ZHANG Luyihang, YANG Yanming, CHEN Yongzhan, LI Junliang, DAI Haomin. Remaining Useful Life life prediction of variable-operating turbofan engine based on VMD-CNN-BiLSTM[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2021.0051
    [8]YANG J X,TANG S J,LI L,et al. Remaining useful life prediction based on implicit nonlinear Wiener degradation process[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(1):328-340 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0243.
    [9]TIAN Gui-shuang, WANG Shao-ping, SHI Jian. Reliability model and lifetime prediction for train traction system considering multiple dependent components[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0797
    [10]HUO Jiuyuan, LI Xin, CHANG Chen, LI Yufeng, ZHANG Yaonan. Roll bearing life prediction based on multi-scale feature fusion[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0161
    [11]LI J Q,FANG Q,FAN T C,et al. Fatigue detection of facial 3D physiological feature points in sleep deprivation[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(9):2753-2762 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0733.
    [12]WANG Li-li, YIN Shuo-feng, PAN Yue. Controller fatigue discrimination algorithm based on facial features[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0057
    [13]WANG K,GUO Y Q,ZHAO W L,et al. Remaining useful life prediction of aeroengine based on SSAE and similarity matching[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(10):2817-2825 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0741.
    [14]LEI J Y,LEI Q N,LI H B,et al. A mesh parameterization method and life reliability-based optimization for turbine blade[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(10):2651-2659 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0708.
    [15]JI Na, LIU Juan, WANG Haoran, GAO Rui, LU Yonglai, LI Fanzhu. Simulation analysis and experimental study on stiffness and fatigue life fluctuation of the rubber bearing for heavy trucks[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0263
    [16]WANG F F,TANG S J,SUN X Y,et al. Remaining useful life prediction based on multi source information with considering random effects[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(11):3075-3085 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0782.
    [17]ZHAO Yu-yu, SUO Chao, WANG Yu-xiao. BSVAR-based remaining useful life prediction for aircraft engines[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0643
    [18]ZHOU Z T,LIU L,SONG X,et al. Remaining useful life prediction method of rolling bearing based on Transformer model[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(2):430-443 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0247.
    [19]BI Y P,ZHANG T,HE Y T,et al. Corrosion and fatigue life prediction of aircraft typical lap structures based on life envelope[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(8):2200-2206 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0604.
    [20]FENG Jianguang, ZHENG Zixia, LONG Dongteng, ZHOU Bo, LU Mingquan, ZHENG Heng. Method for predicting on-orbit residual life of satellite atomic clock[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(11): 2215-2221. doi: 10.13700/j.bh.1001-5965.2021.0087
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(4)

    Article Metrics

    Article views(895) PDF downloads(559) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return